chansung's picture
Update app.py
ce96db4
raw
history blame
4.47 kB
"""
Adapted from https://huggingface.co/spaces/stabilityai/stable-diffusion
"""
from tensorflow import keras
import time
import gradio as gr
import keras_cv
from constants import css, examples, img_height, img_width, num_images_to_gen
from share_btn import community_icon_html, loading_icon_html, share_js
from huggingface_hub import from_pretrained_keras
import requests
# MODEL_CKPT = "chansung/textual-inversion-pipeline@v1673026791"
# MODEL = from_pretrained_keras(MODEL_CKPT)
# model = keras_cv.models.StableDiffusion(
# img_width=img_width, img_height=img_height, jit_compile=True
# )
# model._text_encoder = MODEL
# model._text_encoder.compile(jit_compile=True)
# # Warm-up the model.
# _ = model.text_to_image("Teddy bear", batch_size=num_images_to_gen)
def generate_image_fn(prompt: str, unconditional_guidance_scale: int) -> list:
start_time = time.time()
# `images is an `np.ndarray`. So we convert it to a list of ndarrays.
# Each ndarray represents a generated image.
# Reference: https://gradio.app/docs/#gallery
images = model.text_to_image(
prompt,
batch_size=num_images_to_gen,
unconditional_guidance_scale=unconditional_guidance_scale,
)
end_time = time.time()
print(f"Time taken: {end_time - start_time} seconds.")
return [image for image in images]
demoInterface = gr.Interface(
generate_image_fn,
inputs=[
gr.Textbox(
label="Enter your prompt",
max_lines=1,
# placeholder="cute Sundar Pichai creature",
),
gr.Slider(value=40, minimum=8, maximum=50, step=1),
],
outputs=gr.Gallery().style(grid=[2], height="auto"),
# examples=[["cute Sundar Pichai creature", 8], ["Hello kitty", 8]],
allow_flagging=False,
)
def welcome(name):
return f"Welcome to Gradio, {name}!"
def avaliable_providers():
providers = []
headers = {
"Content-Type": "application/json",
}
endpoint_url = "https://api.endpoints.huggingface.cloud/provider"
response = requests.get(endpoint_url, headers=headers)
for provider in response.json()['items']:
if provider['status'] != 'avaliable':
providers.append(provider['vendor'])
return providers
with gr.Blocks() as demo:
gr.Markdown(
"""
# Your own Stable Diffusion on Google Cloud Platform
""")
with gr.Row():
gcp_project_id = gr.Textbox(
label="GCP project ID",
)
gcp_region = gr.Dropdown(
["us-central1", "asia‑east1", "asia-northeast1"],
value="us-central1",
interactive=True,
label="GCP Region"
)
gr.Markdown(
"""
Configurations on scalability
""")
with gr.Row():
min_nodes = gr.Slider(
label="minimum number of nodes",
minimum=1,
maximum=10)
max_nodes = gr.Slider(
label="maximum number of nodes",
minimum=1,
maximum=10)
btn = gr.Button(value="Ready to Deploy!")
# btn.click(mirror, inputs=[im], outputs=[im_2])
def get_avaliable_regions(provider):
avalialbe_regions = []
headers = {
"Content-Type": "application/json",
}
endpoint_url = f"https://api.endpoints.huggingface.cloud/provider/{provider}/region"
response = requests.get(endpoint_url, headers=headers)
for region in response.json()['items']:
if region['status'] != 'avaliable':
avalialbe_regions.append(f"{region['region']}/{region['label']}")
print(avalialbe_regions)
return avalialbe_regions
with gr.Blocks() as demo2:
gr.Markdown(
"""
# Your own Stable Diffusion on Hugging Face 🤗 Endpoint
""")
providers = avaliable_providers()
with gr.Row():
provider_selector = gr.Dropdown(
label="select cloud provider",
interactive=True,
choices=providers
)
region_selector = gr.Dropdown(
[],
value="",
interactive=True,
label="select a region"
)
gr.Dropdown.change(get_avaliable_regions, inputs=provider_selector, outputs=region_selector)
region_selector.update(interactive=True)
gr.TabbedInterface(
[demoInterface, demo, demo2], ["Try-out", "🚀 Deploy on GCP", " Deploy on 🤗 Endpoint"]
).launch(enable_queue=True)