chansung's picture
upload v1673026791 model
2150dbe
"""
Adapted from https://huggingface.co/spaces/stabilityai/stable-diffusion
"""
from tensorflow import keras
import time
import gradio as gr
import keras_cv
from constants import css, examples, img_height, img_width, num_images_to_gen
from share_btn import community_icon_html, loading_icon_html, share_js
MODEL_CKPT = "chansung/textual-inversion-pipeline@v1673026791"
MODEL = from_pretrained_keras(MODEL_CKPT)
model = keras_cv.models.StableDiffusion(
img_width=img_width, img_height=img_height, jit_compile=True
)
model.text_encoder = MODEL
model.text_encoder.compile(jit_compile=True)
# Warm-up the model.
_ = model.text_to_image("Teddy bear", batch_size=num_images_to_gen)
def generate_image_fn(prompt: str, unconditional_guidance_scale: int) -> list:
start_time = time.time()
# `images is an `np.ndarray`. So we convert it to a list of ndarrays.
# Each ndarray represents a generated image.
# Reference: https://gradio.app/docs/#gallery
images = model.text_to_image(
prompt,
batch_size=num_images_to_gen,
unconditional_guidance_scale=unconditional_guidance_scale,
)
end_time = time.time()
print(f"Time taken: {end_time - start_time} seconds.")
return [image for image in images]
description = "This Space demonstrates a fine-tuned Stable Diffusion model."
article = "This Space is generated automatically from a TFX pipeline. If you are interested in, please check out the [original repository](https://github.com/deep-diver/textual-inversion-sd)."
gr.Interface(
generate_image_fn,
inputs=[
gr.Textbox(
label="Enter your prompt",
max_lines=1,
# placeholder="cute Sundar Pichai creature",
),
gr.Slider(value=40, minimum=8, maximum=50, step=1),
],
outputs=gr.Gallery().style(grid=[2], height="auto"),
title="Generate custom images with finetuned embeddings of Stable Diffusion",
description=description,
article=article,
examples=[["cute Sundar Pichai creature", 8], ["Hello kitty", 8]],
allow_flagging=False,
).launch(enable_queue=True)