Spaces:
Runtime error
Runtime error
""" | |
Adapted from https://huggingface.co/spaces/stabilityai/stable-diffusion | |
""" | |
from tensorflow import keras | |
import time | |
import gradio as gr | |
import keras_cv | |
from constants import css, examples, img_height, img_width, num_images_to_gen | |
from share_btn import community_icon_html, loading_icon_html, share_js | |
MODEL_CKPT = "chansung/textual-inversion-pipeline@v1673026791" | |
MODEL = from_pretrained_keras(MODEL_CKPT) | |
model = keras_cv.models.StableDiffusion( | |
img_width=img_width, img_height=img_height, jit_compile=True | |
) | |
model.text_encoder = MODEL | |
model.text_encoder.compile(jit_compile=True) | |
# Warm-up the model. | |
_ = model.text_to_image("Teddy bear", batch_size=num_images_to_gen) | |
def generate_image_fn(prompt: str, unconditional_guidance_scale: int) -> list: | |
start_time = time.time() | |
# `images is an `np.ndarray`. So we convert it to a list of ndarrays. | |
# Each ndarray represents a generated image. | |
# Reference: https://gradio.app/docs/#gallery | |
images = model.text_to_image( | |
prompt, | |
batch_size=num_images_to_gen, | |
unconditional_guidance_scale=unconditional_guidance_scale, | |
) | |
end_time = time.time() | |
print(f"Time taken: {end_time - start_time} seconds.") | |
return [image for image in images] | |
description = "This Space demonstrates a fine-tuned Stable Diffusion model." | |
article = "This Space is generated automatically from a TFX pipeline. If you are interested in, please check out the [original repository](https://github.com/deep-diver/textual-inversion-sd)." | |
gr.Interface( | |
generate_image_fn, | |
inputs=[ | |
gr.Textbox( | |
label="Enter your prompt", | |
max_lines=1, | |
# placeholder="cute Sundar Pichai creature", | |
), | |
gr.Slider(value=40, minimum=8, maximum=50, step=1), | |
], | |
outputs=gr.Gallery().style(grid=[2], height="auto"), | |
title="Generate custom images with finetuned embeddings of Stable Diffusion", | |
description=description, | |
article=article, | |
examples=[["cute Sundar Pichai creature", 8], ["Hello kitty", 8]], | |
allow_flagging=False, | |
).launch(enable_queue=True) |