""" Adapted from https://huggingface.co/spaces/stabilityai/stable-diffusion """ from tensorflow import keras import time import gradio as gr import keras_cv from constants import css, examples, img_height, img_width, num_images_to_gen from share_btn import community_icon_html, loading_icon_html, share_js MODEL_CKPT = "chansung/textual-inversion-pipeline@v1673026791" MODEL = from_pretrained_keras(MODEL_CKPT) model = keras_cv.models.StableDiffusion( img_width=img_width, img_height=img_height, jit_compile=True ) model.text_encoder = MODEL model.text_encoder.compile(jit_compile=True) # Warm-up the model. _ = model.text_to_image("Teddy bear", batch_size=num_images_to_gen) def generate_image_fn(prompt: str, unconditional_guidance_scale: int) -> list: start_time = time.time() # `images is an `np.ndarray`. So we convert it to a list of ndarrays. # Each ndarray represents a generated image. # Reference: https://gradio.app/docs/#gallery images = model.text_to_image( prompt, batch_size=num_images_to_gen, unconditional_guidance_scale=unconditional_guidance_scale, ) end_time = time.time() print(f"Time taken: {end_time - start_time} seconds.") return [image for image in images] description = "This Space demonstrates a fine-tuned Stable Diffusion model." article = "This Space is generated automatically from a TFX pipeline. If you are interested in, please check out the [original repository](https://github.com/deep-diver/textual-inversion-sd)." gr.Interface( generate_image_fn, inputs=[ gr.Textbox( label="Enter your prompt", max_lines=1, # placeholder="cute Sundar Pichai creature", ), gr.Slider(value=40, minimum=8, maximum=50, step=1), ], outputs=gr.Gallery().style(grid=[2], height="auto"), title="Generate custom images with finetuned embeddings of Stable Diffusion", description=description, article=article, examples=[["cute Sundar Pichai creature", 8], ["Hello kitty", 8]], allow_flagging=False, ).launch(enable_queue=True)