""" Adapted from https://huggingface.co/spaces/stabilityai/stable-diffusion """ from tensorflow import keras import time import gradio as gr import keras_cv from constants import css, examples, img_height, img_width, num_images_to_gen from share_btn import community_icon_html, loading_icon_html, share_js from huggingface_hub import from_pretrained_keras from huggingface_hub import Repository import requests # MODEL_CKPT = "chansung/textual-inversion-pipeline@v1673026791" # MODEL = from_pretrained_keras(MODEL_CKPT) # model = keras_cv.models.StableDiffusion( # img_width=img_width, img_height=img_height, jit_compile=True # ) # model._text_encoder = MODEL # model._text_encoder.compile(jit_compile=True) # # Warm-up the model. # _ = model.text_to_image("Teddy bear", batch_size=num_images_to_gen) def generate_image_fn(prompt: str, unconditional_guidance_scale: int) -> list: start_time = time.time() # `images is an `np.ndarray`. So we convert it to a list of ndarrays. # Each ndarray represents a generated image. # Reference: https://gradio.app/docs/#gallery images = model.text_to_image( prompt, batch_size=num_images_to_gen, unconditional_guidance_scale=unconditional_guidance_scale, ) end_time = time.time() print(f"Time taken: {end_time - start_time} seconds.") return [image for image in images] demoInterface = gr.Interface( generate_image_fn, inputs=[ gr.Textbox( label="Enter your prompt", max_lines=1, # placeholder="cute Sundar Pichai creature", ), gr.Slider(value=40, minimum=8, maximum=50, step=1), ], outputs=gr.Gallery().style(grid=[2], height="auto"), # examples=[["cute Sundar Pichai creature", 8], ["Hello kitty", 8]], allow_flagging=False, ) def avaliable_providers(): providers = [] headers = { "Content-Type": "application/json", } endpoint_url = "https://api.endpoints.huggingface.cloud/provider" response = requests.get(endpoint_url, headers=headers) for provider in response.json()['items']: if provider['status'] == 'available': providers.append(provider['vendor']) return providers with gr.Blocks() as demo: gr.Markdown( """ # Your own Stable Diffusion on Google Cloud Platform """) with gr.Row(): gcp_project_id = gr.Textbox( label="GCP project ID", ) gcp_region = gr.Dropdown( ["us-central1", "asia‑east1", "asia-northeast1"], value="us-central1", interactive=True, label="GCP Region" ) gr.Markdown( """ Configurations on scalability """) with gr.Row(): min_nodes = gr.Slider( label="minimum number of nodes", minimum=1, maximum=10) max_nodes = gr.Slider( label="maximum number of nodes", minimum=1, maximum=10) btn = gr.Button(value="Ready to Deploy!") # btn.click(mirror, inputs=[im], outputs=[im_2]) def update_regions(provider): avalialbe_regions = [] headers = { "Content-Type": "application/json", } endpoint_url = f"https://api.endpoints.huggingface.cloud/provider/{provider}/region" response = requests.get(endpoint_url, headers=headers) for region in response.json()['items']: if region['status'] == 'available': avalialbe_regions.append(f"{region['region']}/{region['label']}") return gr.Dropdown.update( choices=avalialbe_regions, value=avalialbe_regions[0] if len(avalialbe_regions) > 0 else None ) def update_compute_options(provider, region): region = region.split("/")[0] avalialbe_compute_options = [] headers = { "Content-Type": "application/json", } endpoint_url = f"https://api.endpoints.huggingface.cloud/provider/{provider}/region/{region}/compute" print(endpoint_url) response = requests.get(endpoint_url, headers=headers) for compute in response.json()['items']: if compute['status'] == 'available': accelerator = compute['accelerator'] numAccelerators = compute['numAccelerators'] memoryGb = compute['memoryGb'].replace("Gi", "GB") architecture = compute['architecture'] type = f"{numAccelerators}vCPU {memoryGb} · {architecture}" if accelerator == "cpu" else f"{numAccelerators}x {architecture}" avalialbe_compute_options.append( f"{compute['accelerator'].upper()} [{compute['instanceSize']}] · {type}" ) return gr.Dropdown.update( choices=avalialbe_compute_options, value=avalialbe_compute_options[0] if len(avalialbe_compute_options) > 0 else None ) with gr.Blocks() as demo2: gr.Markdown( """ ## Deploy Stable Diffusion on 🤗 Endpoint """) gr.Markdown(""" #### Your 🤗 Access Token """) hf_token_input = gr.Textbox( show_label=False ) gr.Markdown(""" #### Decide the Endpoint name """) endpoint_name_input = gr.Textbox( show_label=False ) providers = avaliable_providers() head_sha = "2a520e132597a810e396ca28805d98ce56ec3544" with gr.Row(): provider_selector = gr.Dropdown( choices=providers, label="select cloud provider", interactive=True, ) region_selector = gr.Dropdown( [], value="", interactive=True, label="select a region" ) provider_selector.change(update_regions, inputs=provider_selector, outputs=region_selector) with gr.Row(): repository_selector = gr.Textbox( value="my-funny-cat", interactive=False, label="target repository" ) repository_selector = gr.Textbox( value=f"v1673257770/{head_sha[:7]}", interactive=False, label="model version(branch)" ) with gr.Row(): task_selector = gr.Textbox( value="Custom", interactive=False, label="task" ) framework_selector = gr.Textbox( value="TensorFlow", interactive=False, label="framework", ) compute_selector = gr.Dropdown( [], value="", label="select compute instance type", interactive=True ) region_selector.change(update_compute_options, inputs=[provider_selector, region_selector], outputs=compute_selector) with gr.Row(): min_node_selector = gr.Number( value=1, label="select min number of nodes", interactive=True, ) max_node_selector = gr.Number( value=1, label="select max number of nodes", interactive=True, ) security_selector = gr.Radio( choices=["Protected", "Public", "Private"], value="Public", label="select security level", interactive=True, ) submit_button = gr.Button( value="Submit", ) status_txt = gr.Textbox( value="any status update will be displayed here", interactive=False ) gr.TabbedInterface( [demoInterface, demo, demo2], ["Try-out", "🚀 Deploy on GCP", " Deploy on 🤗 Endpoint"] ).launch(enable_queue=True)