""" Adapted from https://huggingface.co/spaces/stabilityai/stable-diffusion """ from tensorflow import keras import time import gradio as gr import keras_cv from constants import css, examples, img_height, img_width, num_images_to_gen from share_btn import community_icon_html, loading_icon_html, share_js from huggingface_hub import from_pretrained_keras from huggingface_hub import Repository import json import requests # MODEL_CKPT = "chansung/textual-inversion-pipeline@v1673026791" # MODEL = from_pretrained_keras(MODEL_CKPT) # model = keras_cv.models.StableDiffusion( # img_width=img_width, img_height=img_height, jit_compile=True # ) # model._text_encoder = MODEL # model._text_encoder.compile(jit_compile=True) # # Warm-up the model. # _ = model.text_to_image("Teddy bear", batch_size=num_images_to_gen) head_sha = "398e79c789669981a2ab1da1fbdafc3998c7b08a" def generate_image_fn(prompt: str, unconditional_guidance_scale: int) -> list: start_time = time.time() # `images is an `np.ndarray`. So we convert it to a list of ndarrays. # Each ndarray represents a generated image. # Reference: https://gradio.app/docs/#gallery images = model.text_to_image( prompt, batch_size=num_images_to_gen, unconditional_guidance_scale=unconditional_guidance_scale, ) end_time = time.time() print(f"Time taken: {end_time - start_time} seconds.") return [image for image in images] demoInterface = gr.Interface( generate_image_fn, inputs=[ gr.Textbox( label="Enter your prompt", max_lines=1, # placeholder="cute Sundar Pichai creature", ), gr.Slider(value=40, minimum=8, maximum=50, step=1), ], outputs=gr.Gallery().style(grid=[2], height="auto"), # examples=[["cute Sundar Pichai creature", 8], ["Hello kitty", 8]], allow_flagging=False, ) def avaliable_providers(): providers = [] headers = { "Content-Type": "application/json", } endpoint_url = "https://api.endpoints.huggingface.cloud/provider" response = requests.get(endpoint_url, headers=headers) for provider in response.json()['items']: if provider['status'] == 'available': providers.append(provider['vendor']) return providers with gr.Blocks() as demo: gr.Markdown( """ # Your own Stable Diffusion on Google Cloud Platform """) with gr.Row(): gcp_project_id = gr.Textbox( label="GCP project ID", ) gcp_region = gr.Dropdown( ["us-central1", "asia‑east1", "asia-northeast1"], value="us-central1", interactive=True, label="GCP Region" ) gr.Markdown( """ Configurations on scalability """) with gr.Row(): min_nodes = gr.Slider( label="minimum number of nodes", minimum=1, maximum=10) max_nodes = gr.Slider( label="maximum number of nodes", minimum=1, maximum=10) btn = gr.Button(value="Ready to Deploy!") # btn.click(mirror, inputs=[im], outputs=[im_2]) def update_regions(provider): avalialbe_regions = [] headers = { "Content-Type": "application/json", } endpoint_url = f"https://api.endpoints.huggingface.cloud/provider/{provider}/region" response = requests.get(endpoint_url, headers=headers) for region in response.json()['items']: if region['status'] == 'available': avalialbe_regions.append(f"{region['region']}/{region['label']}") return gr.Dropdown.update( choices=avalialbe_regions, value=avalialbe_regions[0] if len(avalialbe_regions) > 0 else None ) def update_compute_options(provider, region): region = region.split("/")[0] avalialbe_compute_options = [] headers = { "Content-Type": "application/json", } endpoint_url = f"https://api.endpoints.huggingface.cloud/provider/{provider}/region/{region}/compute" print(endpoint_url) response = requests.get(endpoint_url, headers=headers) for compute in response.json()['items']: if compute['status'] == 'available': accelerator = compute['accelerator'] numAccelerators = compute['numAccelerators'] memoryGb = compute['memoryGb'].replace("Gi", "GB") architecture = compute['architecture'] instanceType = compute['instanceType'] type = f"{numAccelerators}vCPU {memoryGb} · {architecture}" if accelerator == "cpu" else f"{numAccelerators}x {architecture}" avalialbe_compute_options.append( f"{compute['accelerator'].upper()} [{compute['instanceSize']}] · {type} · {instanceType}" ) return gr.Dropdown.update( choices=avalialbe_compute_options, value=avalialbe_compute_options[0] if len(avalialbe_compute_options) > 0 else None ) def submit( hf_token_input, endpoint_name_input, provider_selector, region_selector, repository_selector, task_selector, framework_selector, compute_selector, min_node_selector, max_node_selector, security_selector ): compute_resources = compute_selector.split("·") accelerator = compute_resources[0][:3].strip() size_l_index = compute_resources[0].index("[") - 1 size_r_index = compute_resources[0].index("]") size = compute_resources[0][size_l_index : size_r_index].strip() type = compute_resources[-1].strip() payload = { "accountId": repository_selector.split("/")[0], "compute": { "accelerator": accelerator.lower(), "instanceSize": size[1:], "instanceType": type, "scaling": { "maxReplica": int(max_node_selector), "minReplica": int(min_node_selector) } }, "model": { "framework": "custom", "image": { "huggingface": {} }, "repository": repository_selector.lower(), "revision": head_sha, "task": task_selector.lower() }, "name": endpoint_name_input.strip(), "provider": { "region": region_selector.split("/")[0].lower(), "vendor": provider_selector.lower() }, "type": security_selector.lower() } print(payload) payload = json.dumps(payload) print(payload) headers = { "Authorization": f"Bearer {hf_token_input.strip()}", "Content-Type": "application/json", } endpoint_url = f"https://api.endpoints.huggingface.cloud/endpoint" print(endpoint_url) response = requests.post(endpoint_url, headers=headers, data=payload) if response.status_code == 400: return f"{response.text}. Malformed data in {payload}" elif response.status_code == 401: return "Invalid token" elif response.status_code == 409: return f"Endpoint {endpoint_name_input} already exists" elif response.status_code == 202: return f"Endpoint {endpoint_name_input} created successfully on {provider_selector.lower()} using {repository_selector.lower()}@{head_sha}. \n Please check out the progress at https://ui.endpoints.huggingface.co/endpoints." else: return f"something went wrong {response.status_code} = {response.text}" with gr.Blocks() as demo2: gr.Markdown( """ ## Deploy Stable Diffusion on 🤗 Endpoint --- """) gr.Markdown(""" #### Your 🤗 Access Token """) hf_token_input = gr.Textbox( show_label=False, type="password" ) gr.Markdown(""" #### Decide the Endpoint name """) endpoint_name_input = gr.Textbox( show_label=False ) providers = avaliable_providers() with gr.Row(): gr.Markdown(""" #### Cloud Provider """) gr.Markdown(""" #### Cloud Region """) with gr.Row(): provider_selector = gr.Dropdown( choices=providers, interactive=True, show_label=False, ) region_selector = gr.Dropdown( [], value="", interactive=True, show_label=False, ) provider_selector.change(update_regions, inputs=provider_selector, outputs=region_selector) with gr.Row(): gr.Markdown(""" #### Target Model """) gr.Markdown(""" #### Target Model Version(branch) """) with gr.Row(): repository_selector = gr.Textbox( value="chansung/my-kitty", interactive=False, show_label=False, ) revision_selector = gr.Textbox( value=f"v1673365013/{head_sha[:7]}", interactive=False, show_label=False, ) with gr.Row(): gr.Markdown(""" #### Task """) gr.Markdown(""" #### Framework """) with gr.Row(): task_selector = gr.Textbox( value="Custom", interactive=False, show_label=False, ) framework_selector = gr.Textbox( value="TensorFlow", interactive=False, show_label=False, ) gr.Markdown(""" #### Select Compute Instance Type """) compute_selector = gr.Dropdown( [], value="", interactive=True, show_label=False, ) region_selector.change(update_compute_options, inputs=[provider_selector, region_selector], outputs=compute_selector) with gr.Row(): gr.Markdown(""" #### Min Number of Nodes """) gr.Markdown(""" #### Max Number of Nodes """) gr.Markdown(""" #### Security Level """) with gr.Row(): min_node_selector = gr.Number( value=1, interactive=True, show_label=False, ) max_node_selector = gr.Number( value=1, interactive=True, show_label=False, ) security_selector = gr.Radio( choices=["Protected", "Public", "Private"], value="Public", interactive=True, show_label=False, ) submit_button = gr.Button( value="Submit", ) status_txt = gr.Textbox( value="any status update will be displayed here", interactive=False ) submit_button.click( submit, inputs=[ hf_token_input, endpoint_name_input, provider_selector, region_selector, repository_selector, task_selector, framework_selector, compute_selector, min_node_selector, max_node_selector, security_selector], outputs=status_txt) gr.Markdown(""" #### Pricing Table(CPU) - 2023/1/11 """) gr.Dataframe( headers=["provider", "size", "$/h", "vCPUs", "Memory", "Architecture"], datatype=["str", "str", "str", "number", "str", "str"], row_count=8, col_count=(6, "fixed"), value=[ ["aws", "small", "$0.06", 1, "2GB", "Intel Xeon - Ice Lake"], ["aws", "medium", "$0.12", 2, "4GB", "Intel Xeon - Ice Lake"], ["aws", "large", "$0.24", 4, "8GB", "Intel Xeon - Ice Lake"], ["aws", "xlarge", "$0.48", 8, "16GB", "Intel Xeon - Ice Lake"], ["azure", "small", "$0.06", 1, "2GB", "Intel Xeon"], ["azure", "medium", "$0.12", 2, "4GB", "Intel Xeon"], ["azure", "large", "$0.24", 4, "8GB", "Intel Xeon"], ["azure", "xlarge", "$0.48", 8, "16GB", "Intel Xeon"], ] ) gr.Markdown(""" #### Pricing Table(GPU) - 2023/1/11 """) gr.Dataframe( headers=["provider", "size", "$/h", "GPUs", "Memory", "Architecture"], datatype=["str", "str", "str", "number", "str", "str"], row_count=6, col_count=(6, "fixed"), value=[ ["aws", "small", "$0.60", 1, "14GB", "NVIDIA T4"], ["aws", "medium", "$1.30", 1, "24GB", "NVIDIA A10G"], ["aws", "large", "$4.50", 4, "156B", "NVIDIA T4"], ["aws", "xlarge", "$6.50", 1, "80GB", "NVIDIA A100"], ["aws", "xxlarge", "$7.00", 4, "96GB", "NVIDIA A10G"], ["aws", "xxxlarge", "$45.0", 8, "640GB", "NVIDIA A100"], ] ) gr.TabbedInterface( [demo2], ["Deploy on 🤗 Endpoint"] ).launch(enable_queue=True)