Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import tarfile
|
| 2 |
import wandb
|
| 3 |
|
|
@@ -10,6 +11,7 @@ from transformers import ViTFeatureExtractor
|
|
| 10 |
PRETRAIN_CHECKPOINT = "google/vit-base-patch16-224-in21k"
|
| 11 |
feature_extractor = ViTFeatureExtractor.from_pretrained(PRETRAIN_CHECKPOINT)
|
| 12 |
|
|
|
|
| 13 |
MODEL = None
|
| 14 |
|
| 15 |
RESOLTUION = 224
|
|
@@ -43,11 +45,11 @@ def preprocess_input(image):
|
|
| 43 |
"pixel_values": tf.expand_dims(image, 0)
|
| 44 |
}
|
| 45 |
|
| 46 |
-
def get_predictions(
|
| 47 |
global MODEL
|
| 48 |
|
| 49 |
if MODEL is None:
|
| 50 |
-
wandb.login(key=
|
| 51 |
wandb.init(project="tfx-vit-pipeline", id="gvtyqdgn", resume=True)
|
| 52 |
path = wandb.use_artifact('tfx-vit-pipeline/final_model:1688113391', type='model').download()
|
| 53 |
|
|
@@ -66,8 +68,6 @@ def get_predictions(wb_token, image):
|
|
| 66 |
with gr.Blocks() as demo:
|
| 67 |
gr.Markdown("## Simple demo for a Image Classification of the Beans Dataset with HF ViT model")
|
| 68 |
|
| 69 |
-
wb_token_if = gr.Textbox(interactive=True, label="Your Weight & Biases API Key")
|
| 70 |
-
|
| 71 |
with gr.Row():
|
| 72 |
image_if = gr.Image()
|
| 73 |
label_if = gr.Label(num_top_classes=3)
|
|
@@ -76,7 +76,7 @@ with gr.Blocks() as demo:
|
|
| 76 |
|
| 77 |
classify_if.click(
|
| 78 |
get_predictions,
|
| 79 |
-
|
| 80 |
label_if
|
| 81 |
)
|
| 82 |
|
|
|
|
| 1 |
+
import os
|
| 2 |
import tarfile
|
| 3 |
import wandb
|
| 4 |
|
|
|
|
| 11 |
PRETRAIN_CHECKPOINT = "google/vit-base-patch16-224-in21k"
|
| 12 |
feature_extractor = ViTFeatureExtractor.from_pretrained(PRETRAIN_CHECKPOINT)
|
| 13 |
|
| 14 |
+
WB_KEY = os.environ['WB_KEY']
|
| 15 |
MODEL = None
|
| 16 |
|
| 17 |
RESOLTUION = 224
|
|
|
|
| 45 |
"pixel_values": tf.expand_dims(image, 0)
|
| 46 |
}
|
| 47 |
|
| 48 |
+
def get_predictions(image):
|
| 49 |
global MODEL
|
| 50 |
|
| 51 |
if MODEL is None:
|
| 52 |
+
wandb.login(key=WB_KEY)
|
| 53 |
wandb.init(project="tfx-vit-pipeline", id="gvtyqdgn", resume=True)
|
| 54 |
path = wandb.use_artifact('tfx-vit-pipeline/final_model:1688113391', type='model').download()
|
| 55 |
|
|
|
|
| 68 |
with gr.Blocks() as demo:
|
| 69 |
gr.Markdown("## Simple demo for a Image Classification of the Beans Dataset with HF ViT model")
|
| 70 |
|
|
|
|
|
|
|
| 71 |
with gr.Row():
|
| 72 |
image_if = gr.Image()
|
| 73 |
label_if = gr.Label(num_top_classes=3)
|
|
|
|
| 76 |
|
| 77 |
classify_if.click(
|
| 78 |
get_predictions,
|
| 79 |
+
image_if,
|
| 80 |
label_if
|
| 81 |
)
|
| 82 |
|