Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,6 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
from PIL import Image
|
@@ -42,7 +45,16 @@ def preprocess_input(image):
|
|
42 |
"pixel_values": tf.expand_dims(image, 0)
|
43 |
}
|
44 |
|
45 |
-
def get_predictions(image):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
preprocessed_image = preprocess_input(image)
|
47 |
prediction = MODEL.predict(preprocessed_image)
|
48 |
probs = tf.nn.softmax(prediction['logits'], axis=1)
|
@@ -57,10 +69,16 @@ with gr.Blocks() as demo:
|
|
57 |
|
58 |
with gr.Row():
|
59 |
image_if = gr.Image()
|
60 |
-
label_if = gr.Label()
|
61 |
|
62 |
classify_if = gr.Button()
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
# demo = gr.Interface(
|
65 |
# get_predictions,
|
66 |
# gr.inputs.Image(),
|
|
|
1 |
+
import tarfile
|
2 |
+
import wandb
|
3 |
+
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
from PIL import Image
|
|
|
45 |
"pixel_values": tf.expand_dims(image, 0)
|
46 |
}
|
47 |
|
48 |
+
def get_predictions(wb_token, image):
|
49 |
+
if MODEL is None:
|
50 |
+
wandb.login(key=wb_token)
|
51 |
+
path = wandb.use_artifact('tfx-vit-pipeline/final_model:latest', type='model').download()
|
52 |
+
|
53 |
+
tar = tarfile.open(f"{path}/model.tar.gz")
|
54 |
+
tar.extractall(path=".")
|
55 |
+
|
56 |
+
MODEL = tf.keras.models.load_model("./model")
|
57 |
+
|
58 |
preprocessed_image = preprocess_input(image)
|
59 |
prediction = MODEL.predict(preprocessed_image)
|
60 |
probs = tf.nn.softmax(prediction['logits'], axis=1)
|
|
|
69 |
|
70 |
with gr.Row():
|
71 |
image_if = gr.Image()
|
72 |
+
label_if = gr.Label(num_top_classes=3)
|
73 |
|
74 |
classify_if = gr.Button()
|
75 |
|
76 |
+
classify_if.click(
|
77 |
+
get_predictions,
|
78 |
+
[wb_token_if, image_if],
|
79 |
+
label_if
|
80 |
+
)
|
81 |
+
|
82 |
# demo = gr.Interface(
|
83 |
# get_predictions,
|
84 |
# gr.inputs.Image(),
|