chansung commited on
Commit
df5e84d
·
1 Parent(s): 24555e2

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +63 -0
app.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ from PIL import Image
4
+ import tensorflow as tf
5
+ from transformers import ViTFeatureExtractor
6
+ from huggingface_hub import from_pretrained_keras
7
+
8
+ PRETRAIN_CHECKPOINT = "google/vit-base-patch16-224-in21k"
9
+ feature_extractor = ViTFeatureExtractor.from_pretrained(PRETRAIN_CHECKPOINT)
10
+
11
+ MODEL_CKPT = "chansung/vit-e2e-pipeline-hf-integration@v1664863171"
12
+ MODEL = from_pretrained_keras(MODEL_CKPT)
13
+
14
+ RESOLTUION = 224
15
+
16
+ labels = []
17
+
18
+ with open(r"labels.txt", "r") as fp:
19
+ for line in fp:
20
+ labels.append(line[:-1])
21
+
22
+ def normalize_img(
23
+ img, mean=feature_extractor.image_mean, std=feature_extractor.image_std
24
+ ):
25
+ img = img / 255
26
+ mean = tf.constant(mean)
27
+ std = tf.constant(std)
28
+ return (img - mean) / std
29
+
30
+ def preprocess_input(image: Image) -> tf.Tensor:
31
+ image = np.array(image)
32
+ image = tf.convert_to_tensor(image)
33
+
34
+ image = tf.image.resize(image, (RESOLTUION, RESOLTUION))
35
+ image = normalize_img(image)
36
+
37
+ image = tf.transpose(
38
+ image, (2, 0, 1)
39
+ ) # Since HF models are channel-first.
40
+
41
+ return {
42
+ "pixel_values": tf.expand_dims(image, 0)
43
+ }
44
+
45
+ def get_predictions(image: Image) -> tf.Tensor:
46
+ preprocessed_image = preprocess_input(image)
47
+ prediction = MODEL.predict(preprocessed_image)
48
+ probs = tf.nn.softmax(prediction['logits'], axis=1)
49
+
50
+ confidences = {labels[i]: float(probs[0][i]) for i in range(3)}
51
+ return confidences
52
+
53
+ title = "Simple demo for a Image Classification of the Beans Dataset with HF ViT model"
54
+
55
+ demo = gr.Interface(
56
+ get_predictions,
57
+ gr.inputs.Image(type="pil"),
58
+ gr.outputs.Label(num_top_classes=3),
59
+ allow_flagging="never",
60
+ title=title,
61
+ )
62
+
63
+ demo.launch(debug=True)