import gradio as gr import numpy as np from PIL import Image import tensorflow as tf from transformers import ViTFeatureExtractor from huggingface_hub import from_pretrained_keras PRETRAIN_CHECKPOINT = "google/vit-base-patch16-224-in21k" feature_extractor = ViTFeatureExtractor.from_pretrained(PRETRAIN_CHECKPOINT) MODEL_CKPT = "chansung/vit-e2e-pipeline-hf-integration@v1664863171" MODEL = None # from_pretrained_keras(MODEL_CKPT) RESOLTUION = 224 labels = [] with open(r"labels.txt", "r") as fp: for line in fp: labels.append(line[:-1]) def normalize_img( img, mean=feature_extractor.image_mean, std=feature_extractor.image_std ): img = img / 255 mean = tf.constant(mean) std = tf.constant(std) return (img - mean) / std def preprocess_input(image): image = np.array(image) image = tf.convert_to_tensor(image) image = tf.image.resize(image, (RESOLTUION, RESOLTUION)) image = normalize_img(image) image = tf.transpose( image, (2, 0, 1) ) # Since HF models are channel-first. return { "pixel_values": tf.expand_dims(image, 0) } def get_predictions(image): preprocessed_image = preprocess_input(image) prediction = MODEL.predict(preprocessed_image) probs = tf.nn.softmax(prediction['logits'], axis=1) confidences = {labels[i]: float(probs[0][i]) for i in range(3)} return confidences with gr.Blocks() as demo: gr.Markdown("## Simple demo for a Image Classification of the Beans Dataset with HF ViT model") wb_token_if = gr.Textbox(interactive=True, label="Your Weight & Biases API Key") with gr.Row(): image_if = gr.Image() label_if = gr.Label() classify_if = gr.Button() # demo = gr.Interface( # get_predictions, # gr.inputs.Image(), # gr.outputs.Label(num_top_classes=3), # allow_flagging="never", # title=title, # ) demo.launch(debug=True)