Spaces:
Running
Running
File size: 7,277 Bytes
3b13b0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
"""
视频帧提取工具
这个模块提供了简单高效的视频帧提取功能。主要特点:
1. 使用ffmpeg进行视频处理,支持硬件加速
2. 按指定时间间隔提取视频关键帧
3. 支持多种视频格式
4. 支持高清视频帧输出
5. 直接从原视频提取高质量关键帧
不依赖OpenCV和sklearn等库,只使用ffmpeg作为外部依赖,降低了安装和使用的复杂度。
"""
import os
import re
import time
import subprocess
from typing import List, Dict
from loguru import logger
from tqdm import tqdm
from app.utils import ffmpeg_utils
class VideoProcessor:
def __init__(self, video_path: str):
"""
初始化视频处理器
Args:
video_path: 视频文件路径
"""
if not os.path.exists(video_path):
raise FileNotFoundError(f"视频文件不存在: {video_path}")
self.video_path = video_path
self.video_info = self._get_video_info()
self.fps = float(self.video_info.get('fps', 25))
self.duration = float(self.video_info.get('duration', 0))
self.width = int(self.video_info.get('width', 0))
self.height = int(self.video_info.get('height', 0))
self.total_frames = int(self.fps * self.duration)
def _get_video_info(self) -> Dict[str, str]:
"""
使用ffprobe获取视频信息
Returns:
Dict[str, str]: 包含视频基本信息的字典
"""
cmd = [
"ffprobe",
"-v", "error",
"-select_streams", "v:0",
"-show_entries", "stream=width,height,r_frame_rate,duration",
"-of", "default=noprint_wrappers=1:nokey=0",
self.video_path
]
try:
result = subprocess.run(cmd, capture_output=True, text=True, check=True)
lines = result.stdout.strip().split('\n')
info = {}
for line in lines:
if '=' in line:
key, value = line.split('=', 1)
info[key] = value
# 处理帧率(可能是分数形式)
if 'r_frame_rate' in info:
try:
num, den = map(int, info['r_frame_rate'].split('/'))
info['fps'] = str(num / den)
except ValueError:
info['fps'] = info.get('r_frame_rate', '25')
return info
except subprocess.CalledProcessError as e:
logger.error(f"获取视频信息失败: {e.stderr}")
return {
'width': '1280',
'height': '720',
'fps': '25',
'duration': '0'
}
def extract_frames_by_interval(self, output_dir: str, interval_seconds: float = 5.0,
use_hw_accel: bool = True) -> List[int]:
"""
按指定时间间隔提取视频帧
Args:
output_dir: 输出目录
interval_seconds: 帧提取间隔(秒)
use_hw_accel: 是否使用硬件加速
Returns:
List[int]: 提取的帧号列表
"""
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# 计算起始时间和帧提取点
start_time = 0
end_time = self.duration
extraction_times = []
current_time = start_time
while current_time < end_time:
extraction_times.append(current_time)
current_time += interval_seconds
if not extraction_times:
logger.warning("未找到需要提取的帧")
return []
# 确定硬件加速器选项
hw_accel = []
if use_hw_accel and ffmpeg_utils.is_ffmpeg_hwaccel_available():
hw_accel = ffmpeg_utils.get_ffmpeg_hwaccel_args()
# 提取帧
frame_numbers = []
for i, timestamp in enumerate(tqdm(extraction_times, desc="提取视频帧")):
frame_number = int(timestamp * self.fps)
frame_numbers.append(frame_number)
# 格式化时间戳字符串 (HHMMSSmmm)
hours = int(timestamp // 3600)
minutes = int((timestamp % 3600) // 60)
seconds = int(timestamp % 60)
milliseconds = int((timestamp % 1) * 1000)
time_str = f"{hours:02d}{minutes:02d}{seconds:02d}{milliseconds:03d}"
output_path = os.path.join(output_dir, f"keyframe_{frame_number:06d}_{time_str}.jpg")
# 使用ffmpeg提取单帧
cmd = [
"ffmpeg",
"-hide_banner",
"-loglevel", "error",
]
# 添加硬件加速参数
cmd.extend(hw_accel)
cmd.extend([
"-ss", str(timestamp),
"-i", self.video_path,
"-vframes", "1",
"-q:v", "1", # 最高质量
"-y",
output_path
])
try:
subprocess.run(cmd, check=True, capture_output=True)
except subprocess.CalledProcessError as e:
logger.warning(f"提取帧 {frame_number} 失败: {e.stderr}")
logger.info(f"成功提取了 {len(frame_numbers)} 个视频帧")
return frame_numbers
def _detect_hw_accelerator(self) -> List[str]:
"""
检测系统可用的硬件加速器
Returns:
List[str]: 硬件加速器ffmpeg命令参数
"""
# 使用集中式硬件加速检测
if ffmpeg_utils.is_ffmpeg_hwaccel_available():
return ffmpeg_utils.get_ffmpeg_hwaccel_args()
return []
def process_video_pipeline(self,
output_dir: str,
interval_seconds: float = 5.0, # 帧提取间隔(秒)
use_hw_accel: bool = True) -> None:
"""
执行简化的视频处理流程,直接从原视频按固定时间间隔提取帧
Args:
output_dir: 输出目录
interval_seconds: 帧提取间隔(秒)
use_hw_accel: 是否使用硬件加速
"""
# 创建输出目录
os.makedirs(output_dir, exist_ok=True)
try:
# 直接从原视频提取关键帧
logger.info(f"从视频间隔 {interval_seconds} 秒提取关键帧...")
self.extract_frames_by_interval(
output_dir,
interval_seconds=interval_seconds,
use_hw_accel=use_hw_accel
)
logger.info(f"处理完成!视频帧已保存在: {output_dir}")
except Exception as e:
import traceback
logger.error(f"视频处理失败: \n{traceback.format_exc()}")
raise
if __name__ == "__main__":
import time
start_time = time.time()
# 使用示例
processor = VideoProcessor("./resource/videos/test.mp4")
# 设置间隔为3秒提取帧
processor.process_video_pipeline(
output_dir="output",
interval_seconds=3.0,
use_hw_accel=True
)
end_time = time.time()
print(f"处理完成!总耗时: {end_time - start_time:.2f} 秒")
|