Spaces:
Running
Running
File size: 7,113 Bytes
3b13b0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import requests
import json
import os
import time
from typing import Dict, Any
class VideoPipeline:
def __init__(self, base_url: str = "http://127.0.0.1:8080"):
self.base_url = base_url
def download_video(self, url: str, resolution: str = "1080p",
output_format: str = "mp4", rename: str = None) -> Dict[str, Any]:
"""下载视频的第一步"""
endpoint = f"{self.base_url}/api/v2/youtube/download"
payload = {
"url": url,
"resolution": resolution,
"output_format": output_format,
"rename": rename or time.strftime("%Y-%m-%d")
}
response = requests.post(endpoint, json=payload)
response.raise_for_status()
return response.json()
def generate_script(self, video_path: str, skip_seconds: int = 0,
threshold: int = 30, vision_batch_size: int = 10,
vision_llm_provider: str = "gemini") -> Dict[str, Any]:
"""生成脚本的第二步"""
endpoint = f"{self.base_url}/api/v2/scripts/generate"
payload = {
"video_path": video_path,
"skip_seconds": skip_seconds,
"threshold": threshold,
"vision_batch_size": vision_batch_size,
"vision_llm_provider": vision_llm_provider
}
response = requests.post(endpoint, json=payload)
response.raise_for_status()
return response.json()
def crop_video(self, video_path: str, script: list) -> Dict[str, Any]:
"""剪辑视频的第三步"""
endpoint = f"{self.base_url}/api/v2/scripts/crop"
payload = {
"video_origin_path": video_path,
"video_script": script
}
response = requests.post(endpoint, json=payload)
response.raise_for_status()
return response.json()
def generate_final_video(self, task_id: str, video_path: str,
script_path: str, script: list, subclip_videos: Dict[str, str], voice_name: str) -> Dict[str, Any]:
"""生成最终视频的第四步"""
endpoint = f"{self.base_url}/api/v2/scripts/start-subclip"
request_data = {
"video_clip_json": script,
"video_clip_json_path": script_path,
"video_origin_path": video_path,
"video_aspect": "16:9",
"video_language": "zh-CN",
"voice_name": voice_name,
"voice_volume": 1,
"voice_rate": 1.2,
"voice_pitch": 1,
"bgm_name": "random",
"bgm_type": "random",
"bgm_file": "",
"bgm_volume": 0.3,
"subtitle_enabled": True,
"subtitle_position": "bottom",
"font_name": "STHeitiMedium.ttc",
"text_fore_color": "#FFFFFF",
"text_background_color": "transparent",
"font_size": 75,
"stroke_color": "#000000",
"stroke_width": 1.5,
"custom_position": 70,
"n_threads": 8
}
payload = {
"request": request_data,
"subclip_videos": subclip_videos
}
params = {"task_id": task_id}
response = requests.post(endpoint, params=params, json=payload)
response.raise_for_status()
return response.json()
def save_script_to_json(self, script: list, script_path: str) -> str:
"""保存脚本到json文件"""
try:
with open(script_path, 'w', encoding='utf-8') as f:
json.dump(script, f, ensure_ascii=False, indent=2)
print(f"脚本已保存到: {script_path}")
return script_path
except Exception as e:
print(f"保存脚本失败: {str(e)}")
raise
def run_pipeline(self, task_id: str, script_name: str, youtube_url: str, video_name: str="null", skip_seconds: int = 0, threshold: int = 30, vision_batch_size: int = 10, vision_llm_provider: str = "gemini", voice_name: str = "zh-CN-YunjianNeural") -> Dict[str, Any]:
"""运行完整的pipeline"""
try:
current_path = os.path.dirname(os.path.abspath(__file__))
video_path = os.path.join(current_path, "resource", "videos", f"{video_name}.mp4")
# 判断视频是否存在
if not os.path.exists(video_path):
# 1. 下载视频
print(f"视频不存在, 开始下载视频: {video_path}")
download_result = self.download_video(url=youtube_url, resolution="1080p", output_format="mp4", rename=video_name)
video_path = download_result["output_path"]
else:
print(f"视频已存在: {video_path}")
# 2. 判断script_name是否存在
# 2.1.1 拼接脚本路径 NarratoAI/resource/scripts
script_path = os.path.join(current_path, "resource", "scripts", script_name)
if os.path.exists(script_path):
script = json.load(open(script_path, "r", encoding="utf-8"))
else:
# 2.1.2 生成脚本
print("开始生成脚本...")
script_result = self.generate_script(video_path=video_path, skip_seconds=skip_seconds, threshold=threshold, vision_batch_size=vision_batch_size, vision_llm_provider=vision_llm_provider)
script = script_result["script"]
# 2.2 保存脚本到json文件
print("保存脚本到json文件...")
self.save_script_to_json(script=script, script_path=script_path)
# 3. 剪辑视频
print("开始剪辑视频...")
crop_result = self.crop_video(video_path=video_path, script=script)
subclip_videos = crop_result["subclip_videos"]
# 4. 生成最终视频
print("开始生成最终视频...")
self.generate_final_video(
task_id=task_id,
video_path=video_path,
script_path=script_path,
script=script,
subclip_videos=subclip_videos,
voice_name=voice_name
)
return {
"status": "等待异步生成视频",
"path": os.path.join(current_path, "storage", "tasks", task_id)
}
except Exception as e:
return {
"status": "error",
"error": str(e)
}
# 使用示例
if __name__ == "__main__":
pipeline = VideoPipeline()
result = pipeline.run_pipeline(
task_id="test_111901",
script_name="test.json",
youtube_url="https://www.youtube.com/watch?v=vLJ7Yed6FQ4",
video_name="2024-11-19-01",
skip_seconds=50,
threshold=35,
vision_batch_size=10,
vision_llm_provider="gemini",
voice_name="zh-CN-YunjianNeural",
)
print(result)
|