File size: 13,974 Bytes
3b13b0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import traceback

import streamlit as st
import os
from app.config import config
from app.utils import utils
from loguru import logger


def render_basic_settings(tr):
    """渲染基础设置面板"""
    with st.expander(tr("Basic Settings"), expanded=False):
        config_panels = st.columns(3)
        left_config_panel = config_panels[0]
        middle_config_panel = config_panels[1]
        right_config_panel = config_panels[2]

        with left_config_panel:
            render_language_settings(tr)
            render_proxy_settings(tr)

        with middle_config_panel:
            render_vision_llm_settings(tr)  # 视频分析模型设置

        with right_config_panel:
            render_text_llm_settings(tr)  # 文案生成模型设置


def render_language_settings(tr):
    st.subheader(tr("Proxy Settings"))

    """渲染语言设置"""
    system_locale = utils.get_system_locale()
    i18n_dir = os.path.join(os.path.dirname(os.path.dirname(__file__)), "i18n")
    locales = utils.load_locales(i18n_dir)

    display_languages = []
    selected_index = 0
    for i, code in enumerate(locales.keys()):
        display_languages.append(f"{code} - {locales[code].get('Language')}")
        if code == st.session_state.get('ui_language', system_locale):
            selected_index = i

    selected_language = st.selectbox(
        tr("Language"),
        options=display_languages,
        index=selected_index
    )

    if selected_language:
        code = selected_language.split(" - ")[0].strip()
        st.session_state['ui_language'] = code
        config.ui['language'] = code


def render_proxy_settings(tr):
    """渲染代理设置"""
    # 获取当前代理状态
    proxy_enabled = config.proxy.get("enabled", False)
    proxy_url_http = config.proxy.get("http")
    proxy_url_https = config.proxy.get("https")

    # 添加代理开关
    proxy_enabled = st.checkbox(tr("Enable Proxy"), value=proxy_enabled)
    
    # 保存代理开关状态
    # config.proxy["enabled"] = proxy_enabled

    # 只有在代理启用时才显示代理设置输入框
    if proxy_enabled:
        HTTP_PROXY = st.text_input(tr("HTTP_PROXY"), value=proxy_url_http)
        HTTPS_PROXY = st.text_input(tr("HTTPs_PROXY"), value=proxy_url_https)

        if HTTP_PROXY and HTTPS_PROXY:
            config.proxy["http"] = HTTP_PROXY
            config.proxy["https"] = HTTPS_PROXY
            os.environ["HTTP_PROXY"] = HTTP_PROXY
            os.environ["HTTPS_PROXY"] = HTTPS_PROXY
            # logger.debug(f"代理已启用: {HTTP_PROXY}")
    else:
        # 当代理被禁用时,清除环境变量和配置
        os.environ.pop("HTTP_PROXY", None)
        os.environ.pop("HTTPS_PROXY", None)
        # config.proxy["http"] = ""
        # config.proxy["https"] = ""


def test_vision_model_connection(api_key, base_url, model_name, provider, tr):
    """测试视觉模型连接
    
    Args:
        api_key: API密钥
        base_url: 基础URL
        model_name: 模型名称
        provider: 提供商名称
    
    Returns:
        bool: 连接是否成功
        str: 测试结果消息
    """
    if provider.lower() == 'gemini':
        import google.generativeai as genai
        
        try:
            genai.configure(api_key=api_key)
            model = genai.GenerativeModel(model_name)
            model.generate_content("直接回复我文本'当前网络可用'")
            return True, tr("gemini model is available")
        except Exception as e:
            return False, f"{tr('gemini model is not available')}: {str(e)}"
    elif provider.lower() == 'narratoapi':
        import requests
        try:
            # 构建测试请求
            headers = {
                "Authorization": f"Bearer {api_key}"
            }
        
            test_url = f"{base_url.rstrip('/')}/health"
            response = requests.get(test_url, headers=headers, timeout=10)
        
            if response.status_code == 200:
                return True, tr("NarratoAPI is available")
            else:
                return False, f"{tr('NarratoAPI is not available')}: HTTP {response.status_code}"
        except Exception as e:
            return False, f"{tr('NarratoAPI is not available')}: {str(e)}"

    else:
        from openai import OpenAI
        try:
            client = OpenAI(
                api_key=api_key,
                base_url=base_url,
            )

            response = client.chat.completions.create(
                model=model_name,
                messages=[
                    {
                        "role": "system",
                        "content": [{"type": "text", "text": "You are a helpful assistant."}],
                    },
                    {
                        "role": "user",
                        "content": [
                            {
                                "type": "image_url",
                                "image_url": {
                                    "url": "https://help-static-aliyun-doc.aliyuncs.com/file-manage-files/zh-CN/20241022/emyrja/dog_and_girl.jpeg"
                                },
                            },
                            {"type": "text", "text": "回复我网络可用即可"},
                        ],
                    },
                ],
            )
            if response and response.choices:
                return True, tr("QwenVL model is available")
            else:
                return False, tr("QwenVL model returned invalid response")

        except Exception as e:
            # logger.debug(api_key)
            # logger.debug(base_url)
            # logger.debug(model_name)
            return False, f"{tr('QwenVL model is not available')}: {str(e)}"


def render_vision_llm_settings(tr):
    """渲染视频分析模型设置"""
    st.subheader(tr("Vision Model Settings"))

    # 视频分析模型提供商选择
    vision_providers = ['Siliconflow', 'Gemini', 'QwenVL', 'OpenAI']
    saved_vision_provider = config.app.get("vision_llm_provider", "Gemini").lower()
    saved_provider_index = 0

    for i, provider in enumerate(vision_providers):
        if provider.lower() == saved_vision_provider:
            saved_provider_index = i
            break

    vision_provider = st.selectbox(
        tr("Vision Model Provider"),
        options=vision_providers,
        index=saved_provider_index
    )
    vision_provider = vision_provider.lower()
    config.app["vision_llm_provider"] = vision_provider
    st.session_state['vision_llm_providers'] = vision_provider

    # 获取已保存的视觉模型配置
    vision_api_key = config.app.get(f"vision_{vision_provider}_api_key", "")
    vision_base_url = config.app.get(f"vision_{vision_provider}_base_url", "")
    vision_model_name = config.app.get(f"vision_{vision_provider}_model_name", "")

    # 渲染视觉模型配置输入框
    st_vision_api_key = st.text_input(tr("Vision API Key"), value=vision_api_key, type="password")
    
    # 根据不同提供商设置默认值和帮助信息
    if vision_provider == 'gemini':
        st_vision_base_url = st.text_input(
            tr("Vision Base URL"), 
            value=vision_base_url,
            disabled=True,
            help=tr("Gemini API does not require a base URL")
        )
        st_vision_model_name = st.text_input(
            tr("Vision Model Name"), 
            value=vision_model_name or "gemini-2.0-flash-lite",
            help=tr("Default: gemini-2.0-flash-lite")
        )
    elif vision_provider == 'qwenvl':
        st_vision_base_url = st.text_input(
            tr("Vision Base URL"), 
            value=vision_base_url,
            help=tr("Default: https://dashscope.aliyuncs.com/compatible-mode/v1")
        )
        st_vision_model_name = st.text_input(
            tr("Vision Model Name"), 
            value=vision_model_name or "qwen-vl-max-latest",
            help=tr("Default: qwen-vl-max-latest")
        )
    else:
        st_vision_base_url = st.text_input(tr("Vision Base URL"), value=vision_base_url)
        st_vision_model_name = st.text_input(tr("Vision Model Name"), value=vision_model_name)

    # 在配置输入框后添加测试按钮
    if st.button(tr("Test Connection"), key="test_vision_connection"):
        with st.spinner(tr("Testing connection...")):
            success, message = test_vision_model_connection(
                api_key=st_vision_api_key,
                base_url=st_vision_base_url,
                model_name=st_vision_model_name,
                provider=vision_provider,
                tr=tr
            )
            
            if success:
                st.success(tr(message))
            else:
                st.error(tr(message))

    # 保存视觉模型配置
    if st_vision_api_key:
        config.app[f"vision_{vision_provider}_api_key"] = st_vision_api_key
        st.session_state[f"vision_{vision_provider}_api_key"] = st_vision_api_key
    if st_vision_base_url:
        config.app[f"vision_{vision_provider}_base_url"] = st_vision_base_url
        st.session_state[f"vision_{vision_provider}_base_url"] = st_vision_base_url
    if st_vision_model_name:
        config.app[f"vision_{vision_provider}_model_name"] = st_vision_model_name
        st.session_state[f"vision_{vision_provider}_model_name"] = st_vision_model_name


def test_text_model_connection(api_key, base_url, model_name, provider, tr):
    """测试文本模型连接
    
    Args:
        api_key: API密钥
        base_url: 基础URL
        model_name: 模型名称
        provider: 提供商名称
    
    Returns:
        bool: 连接是否成功
        str: 测试结果消息
    """
    import requests
    
    try:
        # 构建统一的测试请求(遵循OpenAI格式)
        headers = {
            "Authorization": f"Bearer {api_key}",
            "Content-Type": "application/json"
        }

        # 特殊处理Gemini
        if provider.lower() == 'gemini':
            import google.generativeai as genai
            try:
                genai.configure(api_key=api_key)
                model = genai.GenerativeModel(model_name)
                model.generate_content("直接回复我文本'当前网络可用'")
                return True, tr("Gemini model is available")
            except Exception as e:
                return False, f"{tr('Gemini model is not available')}: {str(e)}"
        else:
            test_url = f"{base_url.rstrip('/')}/chat/completions"

            # 构建测试消息
            test_data = {
                "model": model_name,
                "messages": [
                    {"role": "user", "content": "直接回复我文本'当前网络可用'"}
                ],
                "stream": False
            }

            # 发送测试请求
            response = requests.post(
                test_url,
                headers=headers,
                json=test_data,
            )
            # logger.debug(model_name)
            # logger.debug(api_key)
            # logger.debug(test_url)
            if response.status_code == 200:
                return True, tr("Text model is available")
            else:
                return False, f"{tr('Text model is not available')}: HTTP {response.status_code}"
            
    except Exception as e:
        logger.error(traceback.format_exc())
        return False, f"{tr('Connection failed')}: {str(e)}"


def render_text_llm_settings(tr):
    """渲染文案生成模型设置"""
    st.subheader(tr("Text Generation Model Settings"))

    # 文案生成模型提供商选择
    text_providers = ['OpenAI', 'Siliconflow', 'DeepSeek', 'Gemini', 'Qwen', 'Moonshot']
    saved_text_provider = config.app.get("text_llm_provider", "OpenAI").lower()
    saved_provider_index = 0

    for i, provider in enumerate(text_providers):
        if provider.lower() == saved_text_provider:
            saved_provider_index = i
            break

    text_provider = st.selectbox(
        tr("Text Model Provider"),
        options=text_providers,
        index=saved_provider_index
    )
    text_provider = text_provider.lower()
    config.app["text_llm_provider"] = text_provider

    # 获取已保存的文本模型配置
    text_api_key = config.app.get(f"text_{text_provider}_api_key")
    text_base_url = config.app.get(f"text_{text_provider}_base_url")
    text_model_name = config.app.get(f"text_{text_provider}_model_name")

    # 渲染文本模型配置输入框
    st_text_api_key = st.text_input(tr("Text API Key"), value=text_api_key, type="password")
    st_text_base_url = st.text_input(tr("Text Base URL"), value=text_base_url)
    st_text_model_name = st.text_input(tr("Text Model Name"), value=text_model_name)

    # 添加测试按钮
    if st.button(tr("Test Connection"), key="test_text_connection"):
        with st.spinner(tr("Testing connection...")):
            success, message = test_text_model_connection(
                api_key=st_text_api_key,
                base_url=st_text_base_url,
                model_name=st_text_model_name,
                provider=text_provider,
                tr=tr
            )
            
            if success:
                st.success(message)
            else:
                st.error(message)

    # 保存文本模型配置
    if st_text_api_key:
        config.app[f"text_{text_provider}_api_key"] = st_text_api_key
    if st_text_base_url:
        config.app[f"text_{text_provider}_base_url"] = st_text_base_url
    if st_text_model_name:
        config.app[f"text_{text_provider}_model_name"] = st_text_model_name

    # # Cloudflare 特殊配置
    # if text_provider == 'cloudflare':
    #     st_account_id = st.text_input(
    #         tr("Account ID"),
    #         value=config.app.get(f"text_{text_provider}_account_id", "")
    #     )
    #     if st_account_id:
    #         config.app[f"text_{text_provider}_account_id"] = st_account_id