aegwe4 / app /utils /ffmpeg_utils.py
chaowenguo's picture
Upload 121 files
3b13b0e verified
"""
FFmpeg 工具模块 - 提供 FFmpeg 相关的工具函数,特别是硬件加速检测
"""
import os
import platform
import subprocess
from typing import Dict, List, Optional, Tuple, Union
from loguru import logger
# 全局变量,存储检测到的硬件加速信息
_FFMPEG_HW_ACCEL_INFO = {
"available": False,
"type": None,
"encoder": None,
"hwaccel_args": [],
"message": "",
"is_dedicated_gpu": False
}
def check_ffmpeg_installation() -> bool:
"""
检查ffmpeg是否已安装
Returns:
bool: 如果安装则返回True,否则返回False
"""
try:
# 在Windows系统上使用UTF-8编码
is_windows = os.name == 'nt'
if is_windows:
subprocess.run(['ffmpeg', '-version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding='utf-8', check=True)
else:
subprocess.run(['ffmpeg', '-version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True)
return True
except (subprocess.SubprocessError, FileNotFoundError):
logger.error("ffmpeg未安装或不在系统PATH中,请安装ffmpeg")
return False
def detect_hardware_acceleration() -> Dict[str, Union[bool, str, List[str], None]]:
"""
检测系统可用的硬件加速器,并存储结果到全局变量
Returns:
Dict: 包含硬件加速信息的字典
"""
global _FFMPEG_HW_ACCEL_INFO
# 如果已经检测过,直接返回结果
if _FFMPEG_HW_ACCEL_INFO["type"] is not None:
return _FFMPEG_HW_ACCEL_INFO
# 检查ffmpeg是否已安装
if not check_ffmpeg_installation():
_FFMPEG_HW_ACCEL_INFO["message"] = "FFmpeg未安装或不在系统PATH中"
return _FFMPEG_HW_ACCEL_INFO
# 检测操作系统
system = platform.system().lower()
logger.debug(f"检测硬件加速 - 操作系统: {system}")
# 获取FFmpeg支持的硬件加速器列表
try:
# 在Windows系统上使用UTF-8编码
is_windows = os.name == 'nt'
if is_windows:
hwaccels_cmd = subprocess.run(
['ffmpeg', '-hide_banner', '-hwaccels'],
stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding='utf-8', text=True
)
else:
hwaccels_cmd = subprocess.run(
['ffmpeg', '-hide_banner', '-hwaccels'],
stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True
)
supported_hwaccels = hwaccels_cmd.stdout.lower()
except Exception as e:
logger.error(f"获取FFmpeg硬件加速器列表失败: {str(e)}")
supported_hwaccels = ""
# 根据操作系统检测不同的硬件加速器
if system == 'darwin': # macOS
_detect_macos_acceleration(supported_hwaccels)
elif system == 'windows': # Windows
_detect_windows_acceleration(supported_hwaccels)
elif system == 'linux': # Linux
_detect_linux_acceleration(supported_hwaccels)
else:
logger.warning(f"不支持的操作系统: {system}")
_FFMPEG_HW_ACCEL_INFO["message"] = f"不支持的操作系统: {system}"
# 记录检测结果已经在启动时输出,这里不再重复输出
return _FFMPEG_HW_ACCEL_INFO
def _detect_macos_acceleration(supported_hwaccels: str) -> None:
"""
检测macOS系统的硬件加速
Args:
supported_hwaccels: FFmpeg支持的硬件加速器列表
"""
global _FFMPEG_HW_ACCEL_INFO
if 'videotoolbox' in supported_hwaccels:
# 测试videotoolbox
try:
test_cmd = subprocess.run(
["ffmpeg", "-hwaccel", "videotoolbox", "-i", "/dev/null", "-f", "null", "-"],
stderr=subprocess.PIPE, stdout=subprocess.PIPE, text=True, check=False
)
if test_cmd.returncode == 0:
_FFMPEG_HW_ACCEL_INFO["available"] = True
_FFMPEG_HW_ACCEL_INFO["type"] = "videotoolbox"
_FFMPEG_HW_ACCEL_INFO["encoder"] = "h264_videotoolbox"
_FFMPEG_HW_ACCEL_INFO["hwaccel_args"] = ["-hwaccel", "videotoolbox"]
# macOS的Metal GPU加速通常是集成GPU
_FFMPEG_HW_ACCEL_INFO["is_dedicated_gpu"] = False
return
except Exception as e:
logger.debug(f"测试videotoolbox失败: {str(e)}")
_FFMPEG_HW_ACCEL_INFO["message"] = "macOS系统未检测到可用的videotoolbox硬件加速"
def _detect_windows_acceleration(supported_hwaccels: str) -> None:
"""
检测Windows系统的硬件加速
Args:
supported_hwaccels: FFmpeg支持的硬件加速器列表
"""
global _FFMPEG_HW_ACCEL_INFO
# 在Windows上,首先检查显卡信息
gpu_info = _get_windows_gpu_info()
# 检查是否为AMD显卡
if 'amd' in gpu_info.lower() or 'radeon' in gpu_info.lower():
logger.info("检测到AMD显卡,为避免兼容性问题,将使用软件编码")
_FFMPEG_HW_ACCEL_INFO["message"] = "检测到AMD显卡,为避免兼容性问题,将使用软件编码"
return
# 检查是否为Intel集成显卡
is_intel_integrated = False
if 'intel' in gpu_info.lower() and ('hd graphics' in gpu_info.lower() or 'uhd graphics' in gpu_info.lower()):
logger.info("检测到Intel集成显卡")
is_intel_integrated = True
# 检测NVIDIA CUDA支持
if 'cuda' in supported_hwaccels and 'nvidia' in gpu_info.lower():
# 添加调试日志
logger.debug(f"Windows检测到NVIDIA显卡,尝试CUDA加速")
try:
# 先检查NVENC编码器是否可用,使用UTF-8编码
encoders_cmd = subprocess.run(
["ffmpeg", "-hide_banner", "-encoders"],
stderr=subprocess.PIPE, stdout=subprocess.PIPE, encoding='utf-8', text=True, check=False
)
has_nvenc = "h264_nvenc" in encoders_cmd.stdout.lower()
logger.debug(f"NVENC编码器检测结果: {'可用' if has_nvenc else '不可用'}")
# 测试CUDA硬件加速,使用UTF-8编码
test_cmd = subprocess.run(
["ffmpeg", "-hwaccel", "cuda", "-i", "NUL", "-f", "null", "-t", "0.1", "-"],
stderr=subprocess.PIPE, stdout=subprocess.PIPE, encoding='utf-8', text=True, check=False
)
# 记录详细的返回信息以便调试
logger.debug(f"CUDA测试返回码: {test_cmd.returncode}")
logger.debug(f"CUDA测试错误输出: {test_cmd.stderr[:200]}..." if len(test_cmd.stderr) > 200 else f"CUDA测试错误输出: {test_cmd.stderr}")
if test_cmd.returncode == 0 or has_nvenc:
_FFMPEG_HW_ACCEL_INFO["available"] = True
_FFMPEG_HW_ACCEL_INFO["type"] = "cuda"
_FFMPEG_HW_ACCEL_INFO["encoder"] = "h264_nvenc"
_FFMPEG_HW_ACCEL_INFO["hwaccel_args"] = ["-hwaccel", "cuda"]
_FFMPEG_HW_ACCEL_INFO["is_dedicated_gpu"] = True
return
# 如果上面的测试失败,尝试另一种方式,使用UTF-8编码
test_cmd2 = subprocess.run(
["ffmpeg", "-hide_banner", "-loglevel", "error", "-hwaccel", "cuda", "-hwaccel_output_format", "cuda", "-i", "NUL", "-f", "null", "-t", "0.1", "-"],
stderr=subprocess.PIPE, stdout=subprocess.PIPE, encoding='utf-8', text=True, check=False
)
if test_cmd2.returncode == 0:
_FFMPEG_HW_ACCEL_INFO["available"] = True
_FFMPEG_HW_ACCEL_INFO["type"] = "cuda"
_FFMPEG_HW_ACCEL_INFO["encoder"] = "h264_nvenc"
_FFMPEG_HW_ACCEL_INFO["hwaccel_args"] = ["-hwaccel", "cuda", "-hwaccel_output_format", "cuda"]
_FFMPEG_HW_ACCEL_INFO["is_dedicated_gpu"] = True
return
except Exception as e:
logger.debug(f"测试CUDA失败: {str(e)}")
# 检测Intel QSV支持(如果是Intel显卡)
if 'qsv' in supported_hwaccels and 'intel' in gpu_info.lower():
try:
test_cmd = subprocess.run(
["ffmpeg", "-hwaccel", "qsv", "-i", "/dev/null", "-f", "null", "-"],
stderr=subprocess.PIPE, stdout=subprocess.PIPE, text=True, check=False
)
if test_cmd.returncode == 0:
_FFMPEG_HW_ACCEL_INFO["available"] = True
_FFMPEG_HW_ACCEL_INFO["type"] = "qsv"
_FFMPEG_HW_ACCEL_INFO["encoder"] = "h264_qsv"
_FFMPEG_HW_ACCEL_INFO["hwaccel_args"] = ["-hwaccel", "qsv"]
_FFMPEG_HW_ACCEL_INFO["is_dedicated_gpu"] = not is_intel_integrated
return
except Exception as e:
logger.debug(f"测试QSV失败: {str(e)}")
# 检测D3D11VA支持
if 'd3d11va' in supported_hwaccels:
logger.debug("Windows尝试D3D11VA加速")
try:
test_cmd = subprocess.run(
["ffmpeg", "-hwaccel", "d3d11va", "-i", "NUL", "-f", "null", "-t", "0.1", "-"],
stderr=subprocess.PIPE, stdout=subprocess.PIPE, encoding='utf-8', text=True, check=False
)
# 记录详细的返回信息以便调试
logger.debug(f"D3D11VA测试返回码: {test_cmd.returncode}")
if test_cmd.returncode == 0:
_FFMPEG_HW_ACCEL_INFO["available"] = True
_FFMPEG_HW_ACCEL_INFO["type"] = "d3d11va"
_FFMPEG_HW_ACCEL_INFO["encoder"] = "h264" # D3D11VA只用于解码,编码仍使用软件编码器
_FFMPEG_HW_ACCEL_INFO["hwaccel_args"] = ["-hwaccel", "d3d11va"]
_FFMPEG_HW_ACCEL_INFO["is_dedicated_gpu"] = not is_intel_integrated
return
except Exception as e:
logger.debug(f"测试D3D11VA失败: {str(e)}")
# 检测DXVA2支持
if 'dxva2' in supported_hwaccels:
logger.debug("Windows尝试DXVA2加速")
try:
test_cmd = subprocess.run(
["ffmpeg", "-hwaccel", "dxva2", "-i", "NUL", "-f", "null", "-t", "0.1", "-"],
stderr=subprocess.PIPE, stdout=subprocess.PIPE, encoding='utf-8', text=True, check=False
)
# 记录详细的返回信息以便调试
logger.debug(f"DXVA2测试返回码: {test_cmd.returncode}")
if test_cmd.returncode == 0:
_FFMPEG_HW_ACCEL_INFO["available"] = True
_FFMPEG_HW_ACCEL_INFO["type"] = "dxva2"
_FFMPEG_HW_ACCEL_INFO["encoder"] = "h264" # DXVA2只用于解码,编码仍使用软件编码器
_FFMPEG_HW_ACCEL_INFO["hwaccel_args"] = ["-hwaccel", "dxva2"]
_FFMPEG_HW_ACCEL_INFO["is_dedicated_gpu"] = not is_intel_integrated
return
except Exception as e:
logger.debug(f"测试DXVA2失败: {str(e)}")
# 如果检测到NVIDIA显卡但前面的测试都失败,尝试直接使用NVENC编码器
if 'nvidia' in gpu_info.lower():
logger.debug("Windows检测到NVIDIA显卡,尝试直接使用NVENC编码器")
try:
# 检查NVENC编码器是否可用,使用UTF-8编码
encoders_cmd = subprocess.run(
["ffmpeg", "-hide_banner", "-encoders"],
stderr=subprocess.PIPE, stdout=subprocess.PIPE, encoding='utf-8', text=True, check=False
)
if "h264_nvenc" in encoders_cmd.stdout.lower():
logger.debug("NVENC编码器可用,尝试直接使用")
# 测试NVENC编码器,使用UTF-8编码
test_cmd = subprocess.run(
["ffmpeg", "-f", "lavfi", "-i", "color=c=black:s=640x360:r=30", "-c:v", "h264_nvenc", "-t", "0.1", "-f", "null", "-"],
stderr=subprocess.PIPE, stdout=subprocess.PIPE, encoding='utf-8', text=True, check=False
)
logger.debug(f"NVENC编码器测试返回码: {test_cmd.returncode}")
if test_cmd.returncode == 0:
_FFMPEG_HW_ACCEL_INFO["available"] = True
_FFMPEG_HW_ACCEL_INFO["type"] = "nvenc"
_FFMPEG_HW_ACCEL_INFO["encoder"] = "h264_nvenc"
_FFMPEG_HW_ACCEL_INFO["hwaccel_args"] = [] # 不使用hwaccel参数,直接使用编码器
_FFMPEG_HW_ACCEL_INFO["is_dedicated_gpu"] = True
return
except Exception as e:
logger.debug(f"测试NVENC编码器失败: {str(e)}")
_FFMPEG_HW_ACCEL_INFO["message"] = f"Windows系统未检测到可用的硬件加速,显卡信息: {gpu_info}"
def _detect_linux_acceleration(supported_hwaccels: str) -> None:
"""
检测Linux系统的硬件加速
Args:
supported_hwaccels: FFmpeg支持的硬件加速器列表
"""
global _FFMPEG_HW_ACCEL_INFO
# 获取Linux显卡信息
gpu_info = _get_linux_gpu_info()
is_nvidia = 'nvidia' in gpu_info.lower()
is_intel = 'intel' in gpu_info.lower()
is_amd = 'amd' in gpu_info.lower() or 'radeon' in gpu_info.lower()
# 检测NVIDIA CUDA支持
if 'cuda' in supported_hwaccels and is_nvidia:
try:
test_cmd = subprocess.run(
["ffmpeg", "-hwaccel", "cuda", "-i", "/dev/null", "-f", "null", "-"],
stderr=subprocess.PIPE, stdout=subprocess.PIPE, text=True, check=False
)
if test_cmd.returncode == 0:
_FFMPEG_HW_ACCEL_INFO["available"] = True
_FFMPEG_HW_ACCEL_INFO["type"] = "cuda"
_FFMPEG_HW_ACCEL_INFO["encoder"] = "h264_nvenc"
_FFMPEG_HW_ACCEL_INFO["hwaccel_args"] = ["-hwaccel", "cuda"]
_FFMPEG_HW_ACCEL_INFO["is_dedicated_gpu"] = True
return
except Exception as e:
logger.debug(f"测试CUDA失败: {str(e)}")
# 检测VAAPI支持
if 'vaapi' in supported_hwaccels:
# 检查是否存在渲染设备
render_devices = ['/dev/dri/renderD128', '/dev/dri/renderD129']
render_device = None
for device in render_devices:
if os.path.exists(device):
render_device = device
break
if render_device:
try:
test_cmd = subprocess.run(
["ffmpeg", "-hwaccel", "vaapi", "-vaapi_device", render_device,
"-i", "/dev/null", "-f", "null", "-"],
stderr=subprocess.PIPE, stdout=subprocess.PIPE, text=True, check=False
)
if test_cmd.returncode == 0:
_FFMPEG_HW_ACCEL_INFO["available"] = True
_FFMPEG_HW_ACCEL_INFO["type"] = "vaapi"
_FFMPEG_HW_ACCEL_INFO["encoder"] = "h264_vaapi"
_FFMPEG_HW_ACCEL_INFO["hwaccel_args"] = ["-hwaccel", "vaapi", "-vaapi_device", render_device]
# 根据显卡类型判断是否为独立显卡
_FFMPEG_HW_ACCEL_INFO["is_dedicated_gpu"] = is_nvidia or (is_amd and not is_intel)
return
except Exception as e:
logger.debug(f"测试VAAPI失败: {str(e)}")
# 检测Intel QSV支持
if 'qsv' in supported_hwaccels and is_intel:
try:
test_cmd = subprocess.run(
["ffmpeg", "-hwaccel", "qsv", "-i", "/dev/null", "-f", "null", "-"],
stderr=subprocess.PIPE, stdout=subprocess.PIPE, text=True, check=False
)
if test_cmd.returncode == 0:
_FFMPEG_HW_ACCEL_INFO["available"] = True
_FFMPEG_HW_ACCEL_INFO["type"] = "qsv"
_FFMPEG_HW_ACCEL_INFO["encoder"] = "h264_qsv"
_FFMPEG_HW_ACCEL_INFO["hwaccel_args"] = ["-hwaccel", "qsv"]
_FFMPEG_HW_ACCEL_INFO["is_dedicated_gpu"] = False # Intel QSV通常是集成GPU
return
except Exception as e:
logger.debug(f"测试QSV失败: {str(e)}")
_FFMPEG_HW_ACCEL_INFO["message"] = f"Linux系统未检测到可用的硬件加速,显卡信息: {gpu_info}"
def _get_windows_gpu_info() -> str:
"""
获取Windows系统的显卡信息
Returns:
str: 显卡信息字符串
"""
try:
# 使用PowerShell获取更可靠的显卡信息,并使用UTF-8编码
gpu_info = subprocess.run(
['powershell', '-Command', "Get-WmiObject Win32_VideoController | Select-Object Name | Format-List"],
stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding='utf-8', text=True, check=False
)
# 如果PowerShell失败,尝试使用wmic
if not gpu_info.stdout.strip():
gpu_info = subprocess.run(
['wmic', 'path', 'win32_VideoController', 'get', 'name'],
stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding='utf-8', text=True, check=False
)
# 记录详细的显卡信息以便调试
logger.debug(f"Windows显卡信息: {gpu_info.stdout}")
return gpu_info.stdout
except Exception as e:
logger.warning(f"获取Windows显卡信息失败: {str(e)}")
return "Unknown GPU"
def _get_linux_gpu_info() -> str:
"""
获取Linux系统的显卡信息
Returns:
str: 显卡信息字符串
"""
try:
# 尝试使用lspci命令
gpu_info = subprocess.run(
['lspci', '-v', '-nn', '|', 'grep', '-i', 'vga\\|display'],
stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, shell=True, check=False
)
if gpu_info.stdout:
return gpu_info.stdout
# 如果lspci命令失败,尝试使用glxinfo
gpu_info = subprocess.run(
['glxinfo', '|', 'grep', '-i', 'vendor\\|renderer'],
stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, shell=True, check=False
)
if gpu_info.stdout:
return gpu_info.stdout
return "Unknown GPU"
except Exception as e:
logger.warning(f"获取Linux显卡信息失败: {str(e)}")
return "Unknown GPU"
def get_ffmpeg_hwaccel_args() -> List[str]:
"""
获取FFmpeg硬件加速参数
Returns:
List[str]: FFmpeg硬件加速参数列表
"""
# 如果还没有检测过,先进行检测
if _FFMPEG_HW_ACCEL_INFO["type"] is None:
detect_hardware_acceleration()
return _FFMPEG_HW_ACCEL_INFO["hwaccel_args"]
def get_ffmpeg_hwaccel_type() -> Optional[str]:
"""
获取FFmpeg硬件加速类型
Returns:
Optional[str]: 硬件加速类型,如果不支持则返回None
"""
# 如果还没有检测过,先进行检测
if _FFMPEG_HW_ACCEL_INFO["type"] is None:
detect_hardware_acceleration()
return _FFMPEG_HW_ACCEL_INFO["type"] if _FFMPEG_HW_ACCEL_INFO["available"] else None
def get_ffmpeg_hwaccel_encoder() -> Optional[str]:
"""
获取FFmpeg硬件加速编码器
Returns:
Optional[str]: 硬件加速编码器,如果不支持则返回None
"""
# 如果还没有检测过,先进行检测
if _FFMPEG_HW_ACCEL_INFO["type"] is None:
detect_hardware_acceleration()
return _FFMPEG_HW_ACCEL_INFO["encoder"] if _FFMPEG_HW_ACCEL_INFO["available"] else None
def get_ffmpeg_hwaccel_info() -> Dict[str, Union[bool, str, List[str], None]]:
"""
获取FFmpeg硬件加速信息
Returns:
Dict: 包含硬件加速信息的字典
"""
# 如果还没有检测过,先进行检测
if _FFMPEG_HW_ACCEL_INFO["type"] is None:
detect_hardware_acceleration()
return _FFMPEG_HW_ACCEL_INFO
def is_ffmpeg_hwaccel_available() -> bool:
"""
检查是否有可用的FFmpeg硬件加速
Returns:
bool: 如果有可用的硬件加速则返回True,否则返回False
"""
# 如果还没有检测过,先进行检测
if _FFMPEG_HW_ACCEL_INFO["type"] is None:
detect_hardware_acceleration()
return _FFMPEG_HW_ACCEL_INFO["available"]
def is_dedicated_gpu() -> bool:
"""
检查是否使用独立显卡进行硬件加速
Returns:
bool: 如果使用独立显卡则返回True,否则返回False
"""
# 如果还没有检测过,先进行检测
if _FFMPEG_HW_ACCEL_INFO["type"] is None:
detect_hardware_acceleration()
return _FFMPEG_HW_ACCEL_INFO["is_dedicated_gpu"]