Spaces:
Running
Running
import json | |
from typing import List, Union, Dict | |
import os | |
from pathlib import Path | |
from loguru import logger | |
from tqdm import tqdm | |
import asyncio | |
from tenacity import retry, stop_after_attempt, RetryError, retry_if_exception_type, wait_exponential | |
from google.api_core import exceptions | |
import google.generativeai as genai | |
import PIL.Image | |
import traceback | |
from app.utils import utils | |
class VisionAnalyzer: | |
"""视觉分析器类""" | |
def __init__(self, model_name: str = "gemini-1.5-flash", api_key: str = None): | |
"""初始化视觉分析器""" | |
if not api_key: | |
raise ValueError("必须提供API密钥") | |
self.model_name = model_name | |
self.api_key = api_key | |
# 初始化配置 | |
self._configure_client() | |
def _configure_client(self): | |
"""配置API客户端""" | |
genai.configure(api_key=self.api_key) | |
# 开放 Gemini 模型安全设置 | |
from google.generativeai.types import HarmCategory, HarmBlockThreshold | |
safety_settings = { | |
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE, | |
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE, | |
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE, | |
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE, | |
} | |
self.model = genai.GenerativeModel(self.model_name, safety_settings=safety_settings) | |
async def _generate_content_with_retry(self, prompt, batch): | |
"""使用重试机制的内部方法来调用 generate_content_async""" | |
try: | |
return await self.model.generate_content_async([prompt, *batch]) | |
except exceptions.ResourceExhausted as e: | |
print(f"API配额限制: {str(e)}") | |
raise RetryError("API调用失败") | |
async def analyze_images(self, | |
images: Union[List[str], List[PIL.Image.Image]], | |
prompt: str, | |
batch_size: int) -> List[Dict]: | |
"""批量分析多张图片""" | |
try: | |
# 加载图片 | |
if isinstance(images[0], str): | |
images = self.load_images(images) | |
# 验证图片列表 | |
if not images: | |
raise ValueError("图片列表为空") | |
# 验证每个图片对象 | |
valid_images = [] | |
for i, img in enumerate(images): | |
if not isinstance(img, PIL.Image.Image): | |
logger.error(f"无效的图片对象,索引 {i}: {type(img)}") | |
continue | |
valid_images.append(img) | |
if not valid_images: | |
raise ValueError("没有有效的图片对象") | |
images = valid_images | |
results = [] | |
# 视频帧总数除以批量处理大小,如果有小数则+1 | |
batches_needed = len(images) // batch_size | |
if len(images) % batch_size > 0: | |
batches_needed += 1 | |
logger.debug(f"视频帧总数:{len(images)}, 每批处理 {batch_size} 帧, 需要访问 VLM {batches_needed} 次") | |
with tqdm(total=batches_needed, desc="分析进度") as pbar: | |
for i in range(0, len(images), batch_size): | |
batch = images[i:i + batch_size] | |
retry_count = 0 | |
while retry_count < 3: | |
try: | |
# 在每个批次处理前添加小延迟 | |
# if i > 0: | |
# await asyncio.sleep(2) | |
# 确保每个批次的图片都是有效的 | |
valid_batch = [img for img in batch if isinstance(img, PIL.Image.Image)] | |
if not valid_batch: | |
raise ValueError(f"批次 {i // batch_size} 中没有有效的图片") | |
response = await self._generate_content_with_retry(prompt, valid_batch) | |
results.append({ | |
'batch_index': i // batch_size, | |
'images_processed': len(valid_batch), | |
'response': response.text, | |
'model_used': self.model_name | |
}) | |
break | |
except Exception as e: | |
retry_count += 1 | |
error_msg = f"批次 {i // batch_size} 处理出错: {str(e)}" | |
logger.error(error_msg) | |
if retry_count >= 3: | |
results.append({ | |
'batch_index': i // batch_size, | |
'images_processed': len(batch), | |
'error': error_msg, | |
'model_used': self.model_name | |
}) | |
else: | |
logger.info(f"批次 {i // batch_size} 处理失败,等待60秒后重试当前批次...") | |
await asyncio.sleep(60) | |
pbar.update(1) | |
return results | |
except Exception as e: | |
error_msg = f"图片分析过程中发生错误: {str(e)}\n{traceback.format_exc()}" | |
logger.error(error_msg) | |
raise Exception(error_msg) | |
def save_results_to_txt(self, results: List[Dict], output_dir: str): | |
"""将分析结果保存到txt文件""" | |
# 确保输出目录存在 | |
os.makedirs(output_dir, exist_ok=True) | |
for result in results: | |
if not result.get('image_paths'): | |
continue | |
response_text = result['response'] | |
image_paths = result['image_paths'] | |
# 从文件名中提取时间戳并转换为标准格式 | |
def format_timestamp(img_path): | |
# 从文件名中提取时间部分 | |
timestamp = Path(img_path).stem.split('_')[-1] | |
try: | |
# 将时间转换为秒 | |
seconds = utils.time_to_seconds(timestamp.replace('_', ':')) | |
# 转换为 HH:MM:SS,mmm 格式 | |
hours = int(seconds // 3600) | |
minutes = int((seconds % 3600) // 60) | |
seconds_remainder = seconds % 60 | |
whole_seconds = int(seconds_remainder) | |
milliseconds = int((seconds_remainder - whole_seconds) * 1000) | |
return f"{hours:02d}:{minutes:02d}:{whole_seconds:02d},{milliseconds:03d}" | |
except Exception as e: | |
logger.error(f"时间戳格式转换错误: {timestamp}, {str(e)}") | |
return timestamp | |
start_timestamp = format_timestamp(image_paths[0]) | |
end_timestamp = format_timestamp(image_paths[-1]) | |
txt_path = os.path.join(output_dir, f"frame_{start_timestamp}_{end_timestamp}.txt") | |
# 保存结果到txt文件 | |
with open(txt_path, 'w', encoding='utf-8') as f: | |
f.write(response_text.strip()) | |
logger.info(f"已保存分析结果到: {txt_path}") | |
def load_images(self, image_paths: List[str]) -> List[PIL.Image.Image]: | |
""" | |
加载多张图片 | |
Args: | |
image_paths: 图片路径列表 | |
Returns: | |
加载后的PIL Image对象列表 | |
""" | |
images = [] | |
failed_images = [] | |
for img_path in image_paths: | |
try: | |
if not os.path.exists(img_path): | |
logger.error(f"图片文件不存在: {img_path}") | |
failed_images.append(img_path) | |
continue | |
img = PIL.Image.open(img_path) | |
# 确保图片被完全加载 | |
img.load() | |
# 转换为RGB模式 | |
if img.mode != 'RGB': | |
img = img.convert('RGB') | |
images.append(img) | |
except Exception as e: | |
logger.error(f"无法加载图片 {img_path}: {str(e)}") | |
failed_images.append(img_path) | |
if failed_images: | |
logger.warning(f"以下图片加载失败:\n{json.dumps(failed_images, indent=2, ensure_ascii=False)}") | |
if not images: | |
raise ValueError("没有成功加载任何图片") | |
return images |