Spaces:
Sleeping
Sleeping
Commit
·
30bf09c
1
Parent(s):
d1cd9d0
refined
Browse files
app.py
CHANGED
@@ -19,185 +19,215 @@ LIGHTS_1BR = 5
|
|
19 |
LIGHTS_2BR = 8
|
20 |
LIGHT_POWER = 6 # Watts per light
|
21 |
|
|
|
22 |
def initialize_session_state():
|
23 |
"""Initialize session state variables"""
|
24 |
defaults = {
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
}
|
31 |
for key, value in defaults.items():
|
32 |
if key not in st.session_state:
|
33 |
st.session_state[key] = value
|
34 |
|
|
|
35 |
def calculate_lighting_consumption(occupancy_1br: float, occupancy_2br: float) -> float:
|
36 |
"""Calculate daily lighting consumption"""
|
37 |
return (
|
38 |
-
(occupancy_1br * ONE_BR_UNITS * LIGHTS_1BR * LIGHT_POWER / 1000)
|
39 |
-
(occupancy_2br * TWO_BR_UNITS * LIGHTS_2BR * LIGHT_POWER / 1000)
|
40 |
) * 24 # Daily kWh
|
41 |
|
42 |
-
|
|
|
|
|
|
|
43 |
"""Calculate daily appliance consumption"""
|
44 |
return (
|
45 |
-
|
46 |
-
|
|
|
47 |
) # Daily kWh
|
48 |
|
49 |
-
|
|
|
|
|
|
|
50 |
"""Calculate total monthly consumption"""
|
51 |
lighting = calculate_lighting_consumption(occupancy_1br, occupancy_2br)
|
52 |
appliances = calculate_appliance_consumption(occupancy_1br, occupancy_2br)
|
53 |
return (lighting + appliances + common_area) * 30 # Monthly kWh
|
54 |
|
|
|
55 |
def solar_production(panels: int) -> float:
|
56 |
"""Monthly solar production with losses"""
|
57 |
return panels * SOLAR_PANEL_RATING * 5 * 0.8 * 30 / 1000 # 5 sun hours
|
58 |
|
|
|
59 |
def battery_storage(batteries: int) -> float:
|
60 |
"""Usable battery capacity"""
|
61 |
return batteries * BATTERY_CAPACITY * BATTERY_VOLTAGE * 0.8 / 1000
|
62 |
|
|
|
63 |
def financial_analysis(consumption: float, production: float, storage: float) -> Dict:
|
64 |
"""Detailed financial calculations"""
|
65 |
solar_used = min(production, consumption)
|
66 |
grid_purchased = max(consumption - solar_used - storage, 0)
|
67 |
-
|
68 |
return {
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
76 |
}
|
77 |
|
78 |
-
|
|
|
|
|
|
|
79 |
"""Create detailed consumption breakdown"""
|
80 |
breakdown = {
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
84 |
}
|
85 |
-
return pd.DataFrame.from_dict(breakdown, orient=
|
|
|
86 |
|
87 |
# Streamlit Interface
|
88 |
def main():
|
89 |
st.set_page_config("Solar Analysis Suite", "🌞", "wide")
|
90 |
initialize_session_state()
|
91 |
-
|
92 |
st.title("🌞 Advanced Solar Performance Analyzer")
|
93 |
-
|
94 |
with st.sidebar:
|
95 |
st.header("System Configuration")
|
96 |
-
st.number_input("Solar Panels", 1, 1000, key=
|
97 |
-
st.number_input("Batteries", 0, 500, key=
|
98 |
-
st.number_input("Panel Price (Ksh)", 1000, 50000, key=
|
99 |
-
st.number_input("Battery Price (Ksh)", 5000, 100000, key=
|
100 |
-
st.number_input("Grid Price (Ksh/kWh)", 10.0, 50.0, key=
|
101 |
-
|
102 |
scenarios = {
|
103 |
"Low Occupancy": {"1br": 0.0, "2br": 1.0, "common": 5.904},
|
104 |
"Medium Occupancy": {"1br": 0.25, "2br": 1.0, "common": 5.904},
|
105 |
-
"High Occupancy": {"1br": 0.5, "2br": 1.0, "common": 5.904}
|
106 |
}
|
107 |
-
|
108 |
analysis_data = []
|
109 |
for name, params in scenarios.items():
|
110 |
-
consumption = total_consumption(
|
111 |
-
params["1br"], params["2br"], params["common"]
|
112 |
-
)
|
113 |
production = solar_production(st.session_state.solar_panels)
|
114 |
storage = battery_storage(st.session_state.batteries)
|
115 |
financials = financial_analysis(consumption, production, storage)
|
116 |
-
|
117 |
-
analysis_data.append(
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
|
|
|
|
124 |
df = pd.DataFrame(analysis_data)
|
125 |
-
|
126 |
# Energy Flow Analysis
|
127 |
st.header("Energy Flow Composition")
|
128 |
fig, ax = plt.subplots(figsize=(10, 6))
|
129 |
-
sns.barplot(
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
ax.set_ylabel("Percentage (%)")
|
133 |
ax.set_title("Energy Contribution Breakdown")
|
134 |
st.pyplot(fig)
|
135 |
-
|
136 |
with st.expander("🔍 Energy Flow Interpretation"):
|
137 |
-
st.markdown(
|
|
|
138 |
**Understanding the Chart:**
|
139 |
- **Solar Contribution**: Percentage of total energy needs met by solar production
|
140 |
- **Grid Dependency**: Remaining energy required from grid
|
141 |
- Ideal scenario shows high solar contribution with minimal grid dependency
|
142 |
-
"""
|
143 |
-
|
|
|
144 |
# Financial Analysis
|
145 |
st.header("Financial Performance Metrics")
|
146 |
-
|
147 |
# Metric 1: Monthly Savings
|
148 |
fig1, ax1 = plt.subplots(figsize=(10, 4))
|
149 |
-
sns.barplot(data=df, x=
|
150 |
ax1.set_title("Monthly Cost Savings")
|
151 |
ax1.set_ylabel("Ksh")
|
152 |
st.pyplot(fig1)
|
153 |
-
|
154 |
with st.expander("💵 Savings Analysis"):
|
155 |
-
st.markdown(
|
|
|
156 |
**Key Observations:**
|
157 |
- Savings calculated as: `(Total Consumption × Grid Price) - (Grid Purchased × Grid Price)`
|
158 |
- Current Grid Price: Ksh {st.session_state.grid_price}/kWh
|
159 |
- Maximum potential savings limited by solar production capacity
|
160 |
-
"""
|
161 |
-
|
162 |
-
|
|
|
163 |
# Metric 2: Payback Period
|
164 |
fig2, ax2 = plt.subplots(figsize=(10, 4))
|
165 |
-
sns.barplot(data=df, x=
|
166 |
ax2.set_title("System Payback Period")
|
167 |
ax2.set_ylabel("Years")
|
168 |
st.pyplot(fig2)
|
169 |
-
|
170 |
with st.expander("⏳ Payback Explanation"):
|
171 |
-
st.markdown(
|
|
|
172 |
**Calculation Methodology:**
|
173 |
- Total Investment: (Panels × {st.session_state.panel_price:,}Ksh) + (Batteries × {st.session_state.battery_price:,}Ksh)
|
174 |
- Annual Savings: Monthly Savings × 12
|
175 |
- Payback Period = Total Investment / Annual Savings
|
176 |
-
"""
|
177 |
-
|
178 |
-
|
|
|
179 |
# Consumption Breakdown
|
180 |
st.header("Detailed Consumption Analysis")
|
181 |
scenario_select = st.selectbox("Select Scenario", list(scenarios.keys()))
|
182 |
-
|
183 |
selected_params = scenarios[scenario_select]
|
184 |
breakdown_df = create_consumption_breakdown(
|
185 |
-
selected_params["1br"],
|
186 |
-
selected_params["2br"],
|
187 |
-
selected_params["common"]
|
188 |
)
|
189 |
-
|
190 |
col1, col2 = st.columns(2)
|
191 |
with col1:
|
192 |
st.subheader("Energy Composition")
|
193 |
fig3, ax3 = plt.subplots()
|
194 |
-
breakdown_df.plot.pie(y=
|
195 |
st.pyplot(fig3)
|
196 |
-
|
197 |
with col2:
|
198 |
st.subheader("Component Breakdown")
|
199 |
st.table(breakdown_df)
|
200 |
-
|
201 |
analysis_text = f"""
|
202 |
**Key Insights for {scenario_select}:**
|
203 |
- Lighting contributes {breakdown_df.loc['Lighting', 'kWh']/breakdown_df.sum().values[0]*100:.1f}% of total consumption
|
@@ -206,5 +236,6 @@ def main():
|
|
206 |
"""
|
207 |
st.markdown(analysis_text)
|
208 |
|
|
|
209 |
if __name__ == "__main__":
|
210 |
main()
|
|
|
19 |
LIGHTS_2BR = 8
|
20 |
LIGHT_POWER = 6 # Watts per light
|
21 |
|
22 |
+
|
23 |
def initialize_session_state():
|
24 |
"""Initialize session state variables"""
|
25 |
defaults = {
|
26 |
+
"solar_panels": 100,
|
27 |
+
"batteries": 50,
|
28 |
+
"panel_price": 13000,
|
29 |
+
"battery_price": 39000,
|
30 |
+
"grid_price": 28.44,
|
31 |
}
|
32 |
for key, value in defaults.items():
|
33 |
if key not in st.session_state:
|
34 |
st.session_state[key] = value
|
35 |
|
36 |
+
|
37 |
def calculate_lighting_consumption(occupancy_1br: float, occupancy_2br: float) -> float:
|
38 |
"""Calculate daily lighting consumption"""
|
39 |
return (
|
40 |
+
(occupancy_1br * ONE_BR_UNITS * LIGHTS_1BR * LIGHT_POWER / 1000)
|
41 |
+
+ (occupancy_2br * TWO_BR_UNITS * LIGHTS_2BR * LIGHT_POWER / 1000)
|
42 |
) * 24 # Daily kWh
|
43 |
|
44 |
+
|
45 |
+
def calculate_appliance_consumption(
|
46 |
+
occupancy_1br: float, occupancy_2br: float
|
47 |
+
) -> float:
|
48 |
"""Calculate daily appliance consumption"""
|
49 |
return (
|
50 |
+
occupancy_1br * ONE_BR_UNITS * (250 - (LIGHTS_1BR * LIGHT_POWER * 24 / 1000))
|
51 |
+
) + (
|
52 |
+
occupancy_2br * TWO_BR_UNITS * (400 - (LIGHTS_2BR * LIGHT_POWER * 24 / 1000))
|
53 |
) # Daily kWh
|
54 |
|
55 |
+
|
56 |
+
def total_consumption(
|
57 |
+
occupancy_1br: float, occupancy_2br: float, common_area: float
|
58 |
+
) -> float:
|
59 |
"""Calculate total monthly consumption"""
|
60 |
lighting = calculate_lighting_consumption(occupancy_1br, occupancy_2br)
|
61 |
appliances = calculate_appliance_consumption(occupancy_1br, occupancy_2br)
|
62 |
return (lighting + appliances + common_area) * 30 # Monthly kWh
|
63 |
|
64 |
+
|
65 |
def solar_production(panels: int) -> float:
|
66 |
"""Monthly solar production with losses"""
|
67 |
return panels * SOLAR_PANEL_RATING * 5 * 0.8 * 30 / 1000 # 5 sun hours
|
68 |
|
69 |
+
|
70 |
def battery_storage(batteries: int) -> float:
|
71 |
"""Usable battery capacity"""
|
72 |
return batteries * BATTERY_CAPACITY * BATTERY_VOLTAGE * 0.8 / 1000
|
73 |
|
74 |
+
|
75 |
def financial_analysis(consumption: float, production: float, storage: float) -> Dict:
|
76 |
"""Detailed financial calculations"""
|
77 |
solar_used = min(production, consumption)
|
78 |
grid_purchased = max(consumption - solar_used - storage, 0)
|
79 |
+
|
80 |
return {
|
81 |
+
"solar_contribution": solar_used / consumption * 100,
|
82 |
+
"grid_dependency": grid_purchased / consumption * 100,
|
83 |
+
"monthly_savings": (consumption * st.session_state.grid_price)
|
84 |
+
- (grid_purchased * st.session_state.grid_price),
|
85 |
+
"payback_period": (
|
86 |
+
st.session_state.solar_panels * st.session_state.panel_price
|
87 |
+
+ st.session_state.batteries * st.session_state.battery_price
|
88 |
+
)
|
89 |
+
/ ((consumption - grid_purchased) * st.session_state.grid_price * 12),
|
90 |
}
|
91 |
|
92 |
+
|
93 |
+
def create_consumption_breakdown(
|
94 |
+
occupancy_1br: float, occupancy_2br: float, common_area: float
|
95 |
+
):
|
96 |
"""Create detailed consumption breakdown"""
|
97 |
breakdown = {
|
98 |
+
"Lighting": calculate_lighting_consumption(occupancy_1br, occupancy_2br) * 30,
|
99 |
+
"Appliances": calculate_appliance_consumption(occupancy_1br, occupancy_2br)
|
100 |
+
* 30,
|
101 |
+
"Common Areas": common_area * 30,
|
102 |
}
|
103 |
+
return pd.DataFrame.from_dict(breakdown, orient="index", columns=["kWh"])
|
104 |
+
|
105 |
|
106 |
# Streamlit Interface
|
107 |
def main():
|
108 |
st.set_page_config("Solar Analysis Suite", "🌞", "wide")
|
109 |
initialize_session_state()
|
110 |
+
|
111 |
st.title("🌞 Advanced Solar Performance Analyzer")
|
112 |
+
|
113 |
with st.sidebar:
|
114 |
st.header("System Configuration")
|
115 |
+
st.number_input("Solar Panels", 1, 1000, key="solar_panels")
|
116 |
+
st.number_input("Batteries", 0, 500, key="batteries")
|
117 |
+
st.number_input("Panel Price (Ksh)", 1000, 50000, key="panel_price")
|
118 |
+
st.number_input("Battery Price (Ksh)", 5000, 100000, key="battery_price")
|
119 |
+
st.number_input("Grid Price (Ksh/kWh)", 10.0, 50.0, key="grid_price")
|
120 |
+
|
121 |
scenarios = {
|
122 |
"Low Occupancy": {"1br": 0.0, "2br": 1.0, "common": 5.904},
|
123 |
"Medium Occupancy": {"1br": 0.25, "2br": 1.0, "common": 5.904},
|
124 |
+
"High Occupancy": {"1br": 0.5, "2br": 1.0, "common": 5.904},
|
125 |
}
|
126 |
+
|
127 |
analysis_data = []
|
128 |
for name, params in scenarios.items():
|
129 |
+
consumption = total_consumption(params["1br"], params["2br"], params["common"])
|
|
|
|
|
130 |
production = solar_production(st.session_state.solar_panels)
|
131 |
storage = battery_storage(st.session_state.batteries)
|
132 |
financials = financial_analysis(consumption, production, storage)
|
133 |
+
|
134 |
+
analysis_data.append(
|
135 |
+
{
|
136 |
+
"Scenario": name,
|
137 |
+
"Consumption": consumption,
|
138 |
+
"Production": production,
|
139 |
+
**financials,
|
140 |
+
}
|
141 |
+
)
|
142 |
+
|
143 |
df = pd.DataFrame(analysis_data)
|
144 |
+
|
145 |
# Energy Flow Analysis
|
146 |
st.header("Energy Flow Composition")
|
147 |
fig, ax = plt.subplots(figsize=(10, 6))
|
148 |
+
sns.barplot(
|
149 |
+
df.melt(
|
150 |
+
id_vars=["Scenario"],
|
151 |
+
value_vars=["solar_contribution", "grid_dependency"],
|
152 |
+
x="Scenario",
|
153 |
+
y="value",
|
154 |
+
hue="variable",
|
155 |
+
ax=ax,
|
156 |
+
)
|
157 |
+
)
|
158 |
ax.set_ylabel("Percentage (%)")
|
159 |
ax.set_title("Energy Contribution Breakdown")
|
160 |
st.pyplot(fig)
|
161 |
+
|
162 |
with st.expander("🔍 Energy Flow Interpretation"):
|
163 |
+
st.markdown(
|
164 |
+
"""
|
165 |
**Understanding the Chart:**
|
166 |
- **Solar Contribution**: Percentage of total energy needs met by solar production
|
167 |
- **Grid Dependency**: Remaining energy required from grid
|
168 |
- Ideal scenario shows high solar contribution with minimal grid dependency
|
169 |
+
"""
|
170 |
+
)
|
171 |
+
|
172 |
# Financial Analysis
|
173 |
st.header("Financial Performance Metrics")
|
174 |
+
|
175 |
# Metric 1: Monthly Savings
|
176 |
fig1, ax1 = plt.subplots(figsize=(10, 4))
|
177 |
+
sns.barplot(data=df, x="Scenario", y="monthly_savings", ax=ax1)
|
178 |
ax1.set_title("Monthly Cost Savings")
|
179 |
ax1.set_ylabel("Ksh")
|
180 |
st.pyplot(fig1)
|
181 |
+
|
182 |
with st.expander("💵 Savings Analysis"):
|
183 |
+
st.markdown(
|
184 |
+
f"""
|
185 |
**Key Observations:**
|
186 |
- Savings calculated as: `(Total Consumption × Grid Price) - (Grid Purchased × Grid Price)`
|
187 |
- Current Grid Price: Ksh {st.session_state.grid_price}/kWh
|
188 |
- Maximum potential savings limited by solar production capacity
|
189 |
+
"""
|
190 |
+
)
|
191 |
+
st.table(df[["Scenario", "Consumption", "Production", "monthly_savings"]])
|
192 |
+
|
193 |
# Metric 2: Payback Period
|
194 |
fig2, ax2 = plt.subplots(figsize=(10, 4))
|
195 |
+
sns.barplot(data=df, x="Scenario", y="payback_period", ax=ax2)
|
196 |
ax2.set_title("System Payback Period")
|
197 |
ax2.set_ylabel("Years")
|
198 |
st.pyplot(fig2)
|
199 |
+
|
200 |
with st.expander("⏳ Payback Explanation"):
|
201 |
+
st.markdown(
|
202 |
+
f"""
|
203 |
**Calculation Methodology:**
|
204 |
- Total Investment: (Panels × {st.session_state.panel_price:,}Ksh) + (Batteries × {st.session_state.battery_price:,}Ksh)
|
205 |
- Annual Savings: Monthly Savings × 12
|
206 |
- Payback Period = Total Investment / Annual Savings
|
207 |
+
"""
|
208 |
+
)
|
209 |
+
st.table(df[["Scenario", "payback_period"]])
|
210 |
+
|
211 |
# Consumption Breakdown
|
212 |
st.header("Detailed Consumption Analysis")
|
213 |
scenario_select = st.selectbox("Select Scenario", list(scenarios.keys()))
|
214 |
+
|
215 |
selected_params = scenarios[scenario_select]
|
216 |
breakdown_df = create_consumption_breakdown(
|
217 |
+
selected_params["1br"], selected_params["2br"], selected_params["common"]
|
|
|
|
|
218 |
)
|
219 |
+
|
220 |
col1, col2 = st.columns(2)
|
221 |
with col1:
|
222 |
st.subheader("Energy Composition")
|
223 |
fig3, ax3 = plt.subplots()
|
224 |
+
breakdown_df.plot.pie(y="kWh", ax=ax3, autopct="%1.1f%%")
|
225 |
st.pyplot(fig3)
|
226 |
+
|
227 |
with col2:
|
228 |
st.subheader("Component Breakdown")
|
229 |
st.table(breakdown_df)
|
230 |
+
|
231 |
analysis_text = f"""
|
232 |
**Key Insights for {scenario_select}:**
|
233 |
- Lighting contributes {breakdown_df.loc['Lighting', 'kWh']/breakdown_df.sum().values[0]*100:.1f}% of total consumption
|
|
|
236 |
"""
|
237 |
st.markdown(analysis_text)
|
238 |
|
239 |
+
|
240 |
if __name__ == "__main__":
|
241 |
main()
|