Spaces:
Sleeping
Sleeping
Commit
·
8879278
1
Parent(s):
704235d
new lights
Browse files- .gitattributes +35 -35
- README.md +12 -12
- app.py +331 -332
- requirements.txt +5 -5
.gitattributes
CHANGED
@@ -1,35 +1,35 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
-
---
|
2 |
-
title: Solar Savings
|
3 |
-
emoji: ⚡
|
4 |
-
colorFrom: yellow
|
5 |
-
colorTo: red
|
6 |
-
sdk: streamlit
|
7 |
-
sdk_version: 1.44.1
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
---
|
2 |
+
title: Solar Savings
|
3 |
+
emoji: ⚡
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: red
|
6 |
+
sdk: streamlit
|
7 |
+
sdk_version: 1.44.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -1,332 +1,331 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import polars as pl
|
3 |
-
import xarray as xr
|
4 |
-
import seaborn as sns
|
5 |
-
import matplotlib.pyplot as plt
|
6 |
-
import numpy as np
|
7 |
-
from typing import Dict, List, Tuple
|
8 |
-
|
9 |
-
# Constants
|
10 |
-
GRID_PRICE = 28.44 # Ksh/kWh
|
11 |
-
TIME_RESOLUTION = 24 # hours in a day
|
12 |
-
|
13 |
-
# Appliance data structure
|
14 |
-
APPLIANCES = {
|
15 |
-
"Lights": {"power_kw":
|
16 |
-
"TV": {"power_kw": 0.08, "usage_hours": 5, "grid_only": False},
|
17 |
-
"Fridge": {"power_kw": 0.8, "usage_hours": 24, "grid_only": False},
|
18 |
-
"Computer": {"power_kw": 0.15, "usage_hours": 9, "grid_only": False},
|
19 |
-
# "Water Pump": {"power_kw": 0.5, "usage_hours": 2, "grid_only": False},
|
20 |
-
"Instant Shower": {"power_kw": 5.0, "usage_hours": 0.5, "grid_only": True},
|
21 |
-
"Electric Kettle": {"power_kw": 1.5, "usage_hours": 0.25, "grid_only": True},
|
22 |
-
"Microwave": {"power_kw": 2.0, "usage_hours": 0.2, "grid_only": True},
|
23 |
-
# "Oven": {"power_kw": 1.0, "usage_hours": 0.3, "grid_only": True},
|
24 |
-
}
|
25 |
-
|
26 |
-
|
27 |
-
def initialize_session_state():
|
28 |
-
"""Initialize all session state variables"""
|
29 |
-
if "solar_price" not in st.session_state:
|
30 |
-
st.session_state.solar_price = 10.0
|
31 |
-
if "solar_ratio" not in st.session_state:
|
32 |
-
st.session_state.solar_ratio = 0.5
|
33 |
-
if "appliance_data" not in st.session_state:
|
34 |
-
st.session_state.appliance_data = None
|
35 |
-
|
36 |
-
|
37 |
-
def create_appliance_dataframe() -> pl.DataFrame:
|
38 |
-
"""Create a Polars DataFrame from the appliance data"""
|
39 |
-
data = []
|
40 |
-
for name, specs in APPLIANCES.items():
|
41 |
-
data.append(
|
42 |
-
{
|
43 |
-
"appliance": name,
|
44 |
-
"power_kw": specs["power_kw"],
|
45 |
-
"usage_hours": specs["usage_hours"],
|
46 |
-
"grid_only": specs["grid_only"],
|
47 |
-
"daily_kwh": specs["power_kw"] * specs["usage_hours"],
|
48 |
-
}
|
49 |
-
)
|
50 |
-
return pl.DataFrame(data)
|
51 |
-
|
52 |
-
|
53 |
-
def create_time_series_dataset(df: pl.DataFrame) -> xr.Dataset:
|
54 |
-
"""Create an xarray Dataset with time series data"""
|
55 |
-
hours = np.arange(TIME_RESOLUTION)
|
56 |
-
appliances = df["appliance"].to_list()
|
57 |
-
|
58 |
-
# Create empty arrays
|
59 |
-
power_usage = xr.DataArray(
|
60 |
-
np.zeros((len(appliances), TIME_RESOLUTION)),
|
61 |
-
dims=("appliance", "hour"),
|
62 |
-
coords={"appliance": appliances, "hour": hours},
|
63 |
-
)
|
64 |
-
|
65 |
-
# Fill with actual usage patterns (simplified - could be enhanced)
|
66 |
-
for i, row in enumerate(df.iter_rows(named=True)):
|
67 |
-
if row["usage_hours"] > 0:
|
68 |
-
usage_start = 8 # assuming morning start
|
69 |
-
usage_end = min(usage_start + int(row["usage_hours"]), TIME_RESOLUTION)
|
70 |
-
power_usage[i, usage_start:usage_end] = row["power_kw"]
|
71 |
-
|
72 |
-
return xr.Dataset(
|
73 |
-
{
|
74 |
-
"power_usage": power_usage,
|
75 |
-
"daily_kwh": xr.DataArray(df["daily_kwh"].to_numpy(), dims="appliance"),
|
76 |
-
"grid_only": xr.DataArray(df["grid_only"].to_numpy(), dims="appliance"),
|
77 |
-
}
|
78 |
-
)
|
79 |
-
|
80 |
-
|
81 |
-
def calculate_consumption(ds: xr.Dataset, solar_ratio: float) -> Dict:
|
82 |
-
"""Calculate consumption breakdown and costs"""
|
83 |
-
# Separate grid-only and mixed appliances
|
84 |
-
mixed_mask = ~ds["grid_only"]
|
85 |
-
grid_only_mask = ds["grid_only"]
|
86 |
-
|
87 |
-
# Calculate consumptions
|
88 |
-
grid_only_consumption = ds["daily_kwh"].where(grid_only_mask, 0).sum().item()
|
89 |
-
total_mixed_consumption = ds["daily_kwh"].where(mixed_mask, 0).sum().item()
|
90 |
-
|
91 |
-
solar_consumption = total_mixed_consumption * solar_ratio
|
92 |
-
grid_mixed_consumption = total_mixed_consumption * (1 - solar_ratio)
|
93 |
-
total_grid_consumption = grid_mixed_consumption + grid_only_consumption
|
94 |
-
|
95 |
-
# Calculate costs
|
96 |
-
grid_cost = total_grid_consumption * GRID_PRICE
|
97 |
-
solar_cost = solar_consumption * st.session_state.solar_price
|
98 |
-
total_cost = grid_cost + solar_cost
|
99 |
-
|
100 |
-
return {
|
101 |
-
"solar_consumption": solar_consumption,
|
102 |
-
"grid_consumption": total_grid_consumption,
|
103 |
-
"grid_only_consumption": grid_only_consumption,
|
104 |
-
"total_consumption": total_mixed_consumption + grid_only_consumption,
|
105 |
-
"grid_cost": grid_cost,
|
106 |
-
"solar_cost": solar_cost,
|
107 |
-
"total_cost": total_cost,
|
108 |
-
"hourly_power": ds["power_usage"],
|
109 |
-
}
|
110 |
-
|
111 |
-
|
112 |
-
def find_optimal_solar_price(solar_ratio: float, years: int = 5) -> float:
|
113 |
-
"""Calculate optimal solar price considering payback period"""
|
114 |
-
# Simplified model - in reality would need installation costs, etc.
|
115 |
-
# Assumes you want payback within 'years' years
|
116 |
-
daily_savings = GRID_PRICE - (GRID_PRICE * 0.8) # 20% savings target
|
117 |
-
return max(0, GRID_PRICE - (daily_savings / years))
|
118 |
-
|
119 |
-
|
120 |
-
def plot_consumption_breakdown(data: Dict):
|
121 |
-
"""Create consumption breakdown visualization"""
|
122 |
-
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
|
123 |
-
|
124 |
-
# Pie chart
|
125 |
-
labels = ["Solar", "Grid (mixed)", "Grid (high load)"]
|
126 |
-
sizes = [
|
127 |
-
data["solar_consumption"],
|
128 |
-
data["grid_consumption"] - data["grid_only_consumption"],
|
129 |
-
data["grid_only_consumption"],
|
130 |
-
]
|
131 |
-
ax1.pie(sizes, labels=labels, autopct="%1.1f%%", startangle=90)
|
132 |
-
ax1.set_title("Energy Source Breakdown")
|
133 |
-
|
134 |
-
# Cost comparison bar plot
|
135 |
-
cost_df = pl.DataFrame(
|
136 |
-
{
|
137 |
-
"source": ["Solar", "Grid", "Total"],
|
138 |
-
"cost": [data["solar_cost"], data["grid_cost"], data["total_cost"]],
|
139 |
-
}
|
140 |
-
)
|
141 |
-
sns.barplot(data=cost_df.to_pandas(), x="source", y="cost", ax=ax2)
|
142 |
-
ax2.set_title("Daily Cost Comparison")
|
143 |
-
ax2.set_ylabel("Cost (Ksh)")
|
144 |
-
|
145 |
-
st.pyplot(fig)
|
146 |
-
|
147 |
-
|
148 |
-
def plot_hourly_usage(hourly_data: xr.DataArray):
|
149 |
-
"""Plot hourly power usage patterns"""
|
150 |
-
fig, ax = plt.subplots(figsize=(10, 5))
|
151 |
-
|
152 |
-
# Convert to DataFrame for Seaborn
|
153 |
-
df = hourly_data.to_dataframe(name="power_kw").reset_index()
|
154 |
-
|
155 |
-
# Plot grid-only vs solar-capable appliances separately
|
156 |
-
grid_only_mask = df["appliance"].isin(
|
157 |
-
[name for name, specs in APPLIANCES.items() if specs["grid_only"]]
|
158 |
-
)
|
159 |
-
|
160 |
-
sns.lineplot(
|
161 |
-
data=df[~grid_only_mask],
|
162 |
-
x="hour",
|
163 |
-
y="power_kw",
|
164 |
-
hue="appliance",
|
165 |
-
ax=ax,
|
166 |
-
palette="crest",
|
167 |
-
legend=True,
|
168 |
-
)
|
169 |
-
|
170 |
-
sns.lineplot(
|
171 |
-
data=df[grid_only_mask],
|
172 |
-
x="hour",
|
173 |
-
y="power_kw",
|
174 |
-
hue="appliance",
|
175 |
-
ax=ax,
|
176 |
-
palette="flare",
|
177 |
-
linestyle="--",
|
178 |
-
legend=True,
|
179 |
-
)
|
180 |
-
|
181 |
-
ax.set_title("Hourly Power Consumption Patterns")
|
182 |
-
ax.set_xlabel("Hour of Day")
|
183 |
-
ax.set_ylabel("Power (kW)")
|
184 |
-
ax.legend(title="Appliance", bbox_to_anchor=(1.05, 1), loc="upper left")
|
185 |
-
|
186 |
-
st.pyplot(fig)
|
187 |
-
|
188 |
-
|
189 |
-
def main():
|
190 |
-
st.set_page_config(
|
191 |
-
page_title="Solar vs Grid Consumption Analyzer", page_icon="☀️", layout="wide"
|
192 |
-
)
|
193 |
-
|
194 |
-
# Initialize session state and data structures
|
195 |
-
initialize_session_state()
|
196 |
-
appliance_df = create_appliance_dataframe()
|
197 |
-
ds = create_time_series_dataset(appliance_df)
|
198 |
-
|
199 |
-
# Main title and description
|
200 |
-
st.title("☀️ Solar vs National Grid Consumption Analyzer")
|
201 |
-
st.markdown("""
|
202 |
-
Analyze the financial impact of different solar/grid consumption ratios
|
203 |
-
and optimize your energy costs.
|
204 |
-
""")
|
205 |
-
|
206 |
-
# Sidebar for inputs
|
207 |
-
with st.sidebar:
|
208 |
-
st.header("Configuration")
|
209 |
-
st.session_state.solar_ratio = st.slider(
|
210 |
-
"Solar/Grid Consumption Ratio",
|
211 |
-
min_value=0.0,
|
212 |
-
max_value=1.0,
|
213 |
-
value=0.5,
|
214 |
-
step=0.1,
|
215 |
-
format="%.1f",
|
216 |
-
)
|
217 |
-
|
218 |
-
st.session_state.solar_price = st.number_input(
|
219 |
-
"Custom Solar Price (Ksh/kWh)",
|
220 |
-
min_value=0.0,
|
221 |
-
max_value=float(GRID_PRICE),
|
222 |
-
value=10.0,
|
223 |
-
step=0.1,
|
224 |
-
)
|
225 |
-
|
226 |
-
st.markdown("---")
|
227 |
-
st.metric("Current Grid Price", f"{GRID_PRICE} Ksh/kWh")
|
228 |
-
|
229 |
-
# Calculate consumption and costs
|
230 |
-
data = calculate_consumption(ds, st.session_state.solar_ratio)
|
231 |
-
optimal_price = find_optimal_solar_price(st.session_state.solar_ratio)
|
232 |
-
|
233 |
-
# Main content columns
|
234 |
-
col1, col2, col3 = st.columns(3)
|
235 |
-
with col1:
|
236 |
-
st.metric("Total Daily Consumption", f"{data['total_consumption']:.2f} kWh")
|
237 |
-
with col2:
|
238 |
-
st.metric("Your Solar Price", f"{st.session_state.solar_price} Ksh/kWh")
|
239 |
-
with col3:
|
240 |
-
st.metric("Suggested Optimal Price", f"{optimal_price:.2f} Ksh/kWh")
|
241 |
-
|
242 |
-
# Visualization section
|
243 |
-
st.markdown("---")
|
244 |
-
st.subheader("Consumption Analysis")
|
245 |
-
plot_consumption_breakdown(data)
|
246 |
-
|
247 |
-
st.subheader("Hourly Usage Patterns")
|
248 |
-
plot_hourly_usage(data["hourly_power"])
|
249 |
-
|
250 |
-
# Financial analysis
|
251 |
-
st.subheader("Financial Impact")
|
252 |
-
savings = (GRID_PRICE * data["total_consumption"]) - data["total_cost"]
|
253 |
-
col1, col2 = st.columns(2)
|
254 |
-
with col1:
|
255 |
-
st.metric("Daily Savings vs All-Grid", f"{savings:.2f} Ksh")
|
256 |
-
st.metric("Annual Savings Potential", f"{savings * 365:.2f} Ksh")
|
257 |
-
with col2:
|
258 |
-
st.metric(
|
259 |
-
"Grid Dependency",
|
260 |
-
f"{(data['grid_consumption'] / data['total_consumption']) * 100:.1f}%",
|
261 |
-
)
|
262 |
-
st.metric(
|
263 |
-
"Solar Viability",
|
264 |
-
f"{(data['solar_consumption'] / data['total_consumption']) * 100:.1f}%",
|
265 |
-
)
|
266 |
-
|
267 |
-
# Appliance details table
|
268 |
-
st.subheader("Appliance Details")
|
269 |
-
st.dataframe(
|
270 |
-
appliance_df.select(
|
271 |
-
[
|
272 |
-
pl.col("appliance"),
|
273 |
-
pl.col("power_kw").alias("Power (kW)"),
|
274 |
-
pl.col("usage_hours").alias("Usage (hrs)"),
|
275 |
-
pl.col("daily_kwh").alias("Daily (kWh)"),
|
276 |
-
pl.col("grid_only").alias("Grid Only"),
|
277 |
-
]
|
278 |
-
),
|
279 |
-
use_container_width=True,
|
280 |
-
)
|
281 |
-
|
282 |
-
# Grid-only appliances warning
|
283 |
-
grid_only_appliances = [
|
284 |
-
name for name, specs in APPLIANCES.items() if specs["grid_only"]
|
285 |
-
]
|
286 |
-
st.warning(f"""
|
287 |
-
**Grid-Only Appliances:** These high-load devices cannot be solar-powered:
|
288 |
-
{", ".join(grid_only_appliances)}.
|
289 |
-
They represent fixed grid costs of {data["grid_only_consumption"]:.2f} kWh/day.
|
290 |
-
""")
|
291 |
-
|
292 |
-
# Advanced analysis expander
|
293 |
-
with st.expander("Advanced Analysis"):
|
294 |
-
st.write("""
|
295 |
-
### Detailed Financial Modeling
|
296 |
-
|
297 |
-
For a more accurate financial analysis, consider:
|
298 |
-
- Solar installation costs
|
299 |
-
- Maintenance expenses
|
300 |
-
- Battery storage requirements
|
301 |
-
- Grid feed-in tariffs
|
302 |
-
- Equipment degradation over time
|
303 |
-
""")
|
304 |
-
|
305 |
-
# Sensitivity analysis
|
306 |
-
st.write("### Price Sensitivity Analysis")
|
307 |
-
solar_prices = np.linspace(0, GRID_PRICE, 20)
|
308 |
-
costs = []
|
309 |
-
for price in solar_prices:
|
310 |
-
temp_data = calculate_consumption(ds, st.session_state.solar_ratio)
|
311 |
-
temp_data["solar_price"] = price
|
312 |
-
costs.append(temp_data["total_cost"])
|
313 |
-
|
314 |
-
fig, ax = plt.subplots()
|
315 |
-
sns.lineplot(x=solar_prices, y=costs, ax=ax)
|
316 |
-
ax.set_xlabel("Solar Price (Ksh/kWh)")
|
317 |
-
ax.set_ylabel("Total Daily Cost (Ksh)")
|
318 |
-
ax.axvline(x=optimal_price, color="r", linestyle="--", label="Optimal Price")
|
319 |
-
ax.legend()
|
320 |
-
st.pyplot(fig)
|
321 |
-
|
322 |
-
# Footer
|
323 |
-
st.markdown("---")
|
324 |
-
st.caption("""
|
325 |
-
*Note: This analysis provides estimates only. Consult with a solar energy professional
|
326 |
-
for accurate system sizing and financial projections.*
|
327 |
-
""")
|
328 |
-
|
329 |
-
|
330 |
-
if __name__ == "__main__":
|
331 |
-
main()
|
332 |
-
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import polars as pl
|
3 |
+
import xarray as xr
|
4 |
+
import seaborn as sns
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import numpy as np
|
7 |
+
from typing import Dict, List, Tuple
|
8 |
+
|
9 |
+
# Constants
|
10 |
+
GRID_PRICE = 28.44 # Ksh/kWh
|
11 |
+
TIME_RESOLUTION = 24 # hours in a day
|
12 |
+
|
13 |
+
# Appliance data structure
|
14 |
+
APPLIANCES = {
|
15 |
+
"Lights": {"power_kw": 2088, "usage_hours": 16, "grid_only": False},
|
16 |
+
"TV": {"power_kw": 0.08, "usage_hours": 5, "grid_only": False},
|
17 |
+
"Fridge": {"power_kw": 0.8, "usage_hours": 24, "grid_only": False},
|
18 |
+
"Computer": {"power_kw": 0.15, "usage_hours": 9, "grid_only": False},
|
19 |
+
# "Water Pump": {"power_kw": 0.5, "usage_hours": 2, "grid_only": False},
|
20 |
+
"Instant Shower": {"power_kw": 5.0, "usage_hours": 0.5, "grid_only": True},
|
21 |
+
"Electric Kettle": {"power_kw": 1.5, "usage_hours": 0.25, "grid_only": True},
|
22 |
+
"Microwave": {"power_kw": 2.0, "usage_hours": 0.2, "grid_only": True},
|
23 |
+
# "Oven": {"power_kw": 1.0, "usage_hours": 0.3, "grid_only": True},
|
24 |
+
}
|
25 |
+
|
26 |
+
|
27 |
+
def initialize_session_state():
|
28 |
+
"""Initialize all session state variables"""
|
29 |
+
if "solar_price" not in st.session_state:
|
30 |
+
st.session_state.solar_price = 10.0
|
31 |
+
if "solar_ratio" not in st.session_state:
|
32 |
+
st.session_state.solar_ratio = 0.5
|
33 |
+
if "appliance_data" not in st.session_state:
|
34 |
+
st.session_state.appliance_data = None
|
35 |
+
|
36 |
+
|
37 |
+
def create_appliance_dataframe() -> pl.DataFrame:
|
38 |
+
"""Create a Polars DataFrame from the appliance data"""
|
39 |
+
data = []
|
40 |
+
for name, specs in APPLIANCES.items():
|
41 |
+
data.append(
|
42 |
+
{
|
43 |
+
"appliance": name,
|
44 |
+
"power_kw": specs["power_kw"],
|
45 |
+
"usage_hours": specs["usage_hours"],
|
46 |
+
"grid_only": specs["grid_only"],
|
47 |
+
"daily_kwh": specs["power_kw"] * specs["usage_hours"],
|
48 |
+
}
|
49 |
+
)
|
50 |
+
return pl.DataFrame(data)
|
51 |
+
|
52 |
+
|
53 |
+
def create_time_series_dataset(df: pl.DataFrame) -> xr.Dataset:
|
54 |
+
"""Create an xarray Dataset with time series data"""
|
55 |
+
hours = np.arange(TIME_RESOLUTION)
|
56 |
+
appliances = df["appliance"].to_list()
|
57 |
+
|
58 |
+
# Create empty arrays
|
59 |
+
power_usage = xr.DataArray(
|
60 |
+
np.zeros((len(appliances), TIME_RESOLUTION)),
|
61 |
+
dims=("appliance", "hour"),
|
62 |
+
coords={"appliance": appliances, "hour": hours},
|
63 |
+
)
|
64 |
+
|
65 |
+
# Fill with actual usage patterns (simplified - could be enhanced)
|
66 |
+
for i, row in enumerate(df.iter_rows(named=True)):
|
67 |
+
if row["usage_hours"] > 0:
|
68 |
+
usage_start = 8 # assuming morning start
|
69 |
+
usage_end = min(usage_start + int(row["usage_hours"]), TIME_RESOLUTION)
|
70 |
+
power_usage[i, usage_start:usage_end] = row["power_kw"]
|
71 |
+
|
72 |
+
return xr.Dataset(
|
73 |
+
{
|
74 |
+
"power_usage": power_usage,
|
75 |
+
"daily_kwh": xr.DataArray(df["daily_kwh"].to_numpy(), dims="appliance"),
|
76 |
+
"grid_only": xr.DataArray(df["grid_only"].to_numpy(), dims="appliance"),
|
77 |
+
}
|
78 |
+
)
|
79 |
+
|
80 |
+
|
81 |
+
def calculate_consumption(ds: xr.Dataset, solar_ratio: float) -> Dict:
|
82 |
+
"""Calculate consumption breakdown and costs"""
|
83 |
+
# Separate grid-only and mixed appliances
|
84 |
+
mixed_mask = ~ds["grid_only"]
|
85 |
+
grid_only_mask = ds["grid_only"]
|
86 |
+
|
87 |
+
# Calculate consumptions
|
88 |
+
grid_only_consumption = ds["daily_kwh"].where(grid_only_mask, 0).sum().item()
|
89 |
+
total_mixed_consumption = ds["daily_kwh"].where(mixed_mask, 0).sum().item()
|
90 |
+
|
91 |
+
solar_consumption = total_mixed_consumption * solar_ratio
|
92 |
+
grid_mixed_consumption = total_mixed_consumption * (1 - solar_ratio)
|
93 |
+
total_grid_consumption = grid_mixed_consumption + grid_only_consumption
|
94 |
+
|
95 |
+
# Calculate costs
|
96 |
+
grid_cost = total_grid_consumption * GRID_PRICE
|
97 |
+
solar_cost = solar_consumption * st.session_state.solar_price
|
98 |
+
total_cost = grid_cost + solar_cost
|
99 |
+
|
100 |
+
return {
|
101 |
+
"solar_consumption": solar_consumption,
|
102 |
+
"grid_consumption": total_grid_consumption,
|
103 |
+
"grid_only_consumption": grid_only_consumption,
|
104 |
+
"total_consumption": total_mixed_consumption + grid_only_consumption,
|
105 |
+
"grid_cost": grid_cost,
|
106 |
+
"solar_cost": solar_cost,
|
107 |
+
"total_cost": total_cost,
|
108 |
+
"hourly_power": ds["power_usage"],
|
109 |
+
}
|
110 |
+
|
111 |
+
|
112 |
+
def find_optimal_solar_price(solar_ratio: float, years: int = 5) -> float:
|
113 |
+
"""Calculate optimal solar price considering payback period"""
|
114 |
+
# Simplified model - in reality would need installation costs, etc.
|
115 |
+
# Assumes you want payback within 'years' years
|
116 |
+
daily_savings = GRID_PRICE - (GRID_PRICE * 0.8) # 20% savings target
|
117 |
+
return max(0, GRID_PRICE - (daily_savings / years))
|
118 |
+
|
119 |
+
|
120 |
+
def plot_consumption_breakdown(data: Dict):
|
121 |
+
"""Create consumption breakdown visualization"""
|
122 |
+
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
|
123 |
+
|
124 |
+
# Pie chart
|
125 |
+
labels = ["Solar", "Grid (mixed)", "Grid (high load)"]
|
126 |
+
sizes = [
|
127 |
+
data["solar_consumption"],
|
128 |
+
data["grid_consumption"] - data["grid_only_consumption"],
|
129 |
+
data["grid_only_consumption"],
|
130 |
+
]
|
131 |
+
ax1.pie(sizes, labels=labels, autopct="%1.1f%%", startangle=90)
|
132 |
+
ax1.set_title("Energy Source Breakdown")
|
133 |
+
|
134 |
+
# Cost comparison bar plot
|
135 |
+
cost_df = pl.DataFrame(
|
136 |
+
{
|
137 |
+
"source": ["Solar", "Grid", "Total"],
|
138 |
+
"cost": [data["solar_cost"], data["grid_cost"], data["total_cost"]],
|
139 |
+
}
|
140 |
+
)
|
141 |
+
sns.barplot(data=cost_df.to_pandas(), x="source", y="cost", ax=ax2)
|
142 |
+
ax2.set_title("Daily Cost Comparison")
|
143 |
+
ax2.set_ylabel("Cost (Ksh)")
|
144 |
+
|
145 |
+
st.pyplot(fig)
|
146 |
+
|
147 |
+
|
148 |
+
def plot_hourly_usage(hourly_data: xr.DataArray):
|
149 |
+
"""Plot hourly power usage patterns"""
|
150 |
+
fig, ax = plt.subplots(figsize=(10, 5))
|
151 |
+
|
152 |
+
# Convert to DataFrame for Seaborn
|
153 |
+
df = hourly_data.to_dataframe(name="power_kw").reset_index()
|
154 |
+
|
155 |
+
# Plot grid-only vs solar-capable appliances separately
|
156 |
+
grid_only_mask = df["appliance"].isin(
|
157 |
+
[name for name, specs in APPLIANCES.items() if specs["grid_only"]]
|
158 |
+
)
|
159 |
+
|
160 |
+
sns.lineplot(
|
161 |
+
data=df[~grid_only_mask],
|
162 |
+
x="hour",
|
163 |
+
y="power_kw",
|
164 |
+
hue="appliance",
|
165 |
+
ax=ax,
|
166 |
+
palette="crest",
|
167 |
+
legend=True,
|
168 |
+
)
|
169 |
+
|
170 |
+
sns.lineplot(
|
171 |
+
data=df[grid_only_mask],
|
172 |
+
x="hour",
|
173 |
+
y="power_kw",
|
174 |
+
hue="appliance",
|
175 |
+
ax=ax,
|
176 |
+
palette="flare",
|
177 |
+
linestyle="--",
|
178 |
+
legend=True,
|
179 |
+
)
|
180 |
+
|
181 |
+
ax.set_title("Hourly Power Consumption Patterns")
|
182 |
+
ax.set_xlabel("Hour of Day")
|
183 |
+
ax.set_ylabel("Power (kW)")
|
184 |
+
ax.legend(title="Appliance", bbox_to_anchor=(1.05, 1), loc="upper left")
|
185 |
+
|
186 |
+
st.pyplot(fig)
|
187 |
+
|
188 |
+
|
189 |
+
def main():
|
190 |
+
st.set_page_config(
|
191 |
+
page_title="Solar vs Grid Consumption Analyzer", page_icon="☀️", layout="wide"
|
192 |
+
)
|
193 |
+
|
194 |
+
# Initialize session state and data structures
|
195 |
+
initialize_session_state()
|
196 |
+
appliance_df = create_appliance_dataframe()
|
197 |
+
ds = create_time_series_dataset(appliance_df)
|
198 |
+
|
199 |
+
# Main title and description
|
200 |
+
st.title("☀️ Solar vs National Grid Consumption Analyzer")
|
201 |
+
st.markdown("""
|
202 |
+
Analyze the financial impact of different solar/grid consumption ratios
|
203 |
+
and optimize your energy costs.
|
204 |
+
""")
|
205 |
+
|
206 |
+
# Sidebar for inputs
|
207 |
+
with st.sidebar:
|
208 |
+
st.header("Configuration")
|
209 |
+
st.session_state.solar_ratio = st.slider(
|
210 |
+
"Solar/Grid Consumption Ratio",
|
211 |
+
min_value=0.0,
|
212 |
+
max_value=1.0,
|
213 |
+
value=0.5,
|
214 |
+
step=0.1,
|
215 |
+
format="%.1f",
|
216 |
+
)
|
217 |
+
|
218 |
+
st.session_state.solar_price = st.number_input(
|
219 |
+
"Custom Solar Price (Ksh/kWh)",
|
220 |
+
min_value=0.0,
|
221 |
+
max_value=float(GRID_PRICE),
|
222 |
+
value=10.0,
|
223 |
+
step=0.1,
|
224 |
+
)
|
225 |
+
|
226 |
+
st.markdown("---")
|
227 |
+
st.metric("Current Grid Price", f"{GRID_PRICE} Ksh/kWh")
|
228 |
+
|
229 |
+
# Calculate consumption and costs
|
230 |
+
data = calculate_consumption(ds, st.session_state.solar_ratio)
|
231 |
+
optimal_price = find_optimal_solar_price(st.session_state.solar_ratio)
|
232 |
+
|
233 |
+
# Main content columns
|
234 |
+
col1, col2, col3 = st.columns(3)
|
235 |
+
with col1:
|
236 |
+
st.metric("Total Daily Consumption", f"{data['total_consumption']:.2f} kWh")
|
237 |
+
with col2:
|
238 |
+
st.metric("Your Solar Price", f"{st.session_state.solar_price} Ksh/kWh")
|
239 |
+
with col3:
|
240 |
+
st.metric("Suggested Optimal Price", f"{optimal_price:.2f} Ksh/kWh")
|
241 |
+
|
242 |
+
# Visualization section
|
243 |
+
st.markdown("---")
|
244 |
+
st.subheader("Consumption Analysis")
|
245 |
+
plot_consumption_breakdown(data)
|
246 |
+
|
247 |
+
st.subheader("Hourly Usage Patterns")
|
248 |
+
plot_hourly_usage(data["hourly_power"])
|
249 |
+
|
250 |
+
# Financial analysis
|
251 |
+
st.subheader("Financial Impact")
|
252 |
+
savings = (GRID_PRICE * data["total_consumption"]) - data["total_cost"]
|
253 |
+
col1, col2 = st.columns(2)
|
254 |
+
with col1:
|
255 |
+
st.metric("Daily Savings vs All-Grid", f"{savings:.2f} Ksh")
|
256 |
+
st.metric("Annual Savings Potential", f"{savings * 365:.2f} Ksh")
|
257 |
+
with col2:
|
258 |
+
st.metric(
|
259 |
+
"Grid Dependency",
|
260 |
+
f"{(data['grid_consumption'] / data['total_consumption']) * 100:.1f}%",
|
261 |
+
)
|
262 |
+
st.metric(
|
263 |
+
"Solar Viability",
|
264 |
+
f"{(data['solar_consumption'] / data['total_consumption']) * 100:.1f}%",
|
265 |
+
)
|
266 |
+
|
267 |
+
# Appliance details table
|
268 |
+
st.subheader("Appliance Details")
|
269 |
+
st.dataframe(
|
270 |
+
appliance_df.select(
|
271 |
+
[
|
272 |
+
pl.col("appliance"),
|
273 |
+
pl.col("power_kw").alias("Power (kW)"),
|
274 |
+
pl.col("usage_hours").alias("Usage (hrs)"),
|
275 |
+
pl.col("daily_kwh").alias("Daily (kWh)"),
|
276 |
+
pl.col("grid_only").alias("Grid Only"),
|
277 |
+
]
|
278 |
+
),
|
279 |
+
use_container_width=True,
|
280 |
+
)
|
281 |
+
|
282 |
+
# Grid-only appliances warning
|
283 |
+
grid_only_appliances = [
|
284 |
+
name for name, specs in APPLIANCES.items() if specs["grid_only"]
|
285 |
+
]
|
286 |
+
st.warning(f"""
|
287 |
+
**Grid-Only Appliances:** These high-load devices cannot be solar-powered:
|
288 |
+
{", ".join(grid_only_appliances)}.
|
289 |
+
They represent fixed grid costs of {data["grid_only_consumption"]:.2f} kWh/day.
|
290 |
+
""")
|
291 |
+
|
292 |
+
# Advanced analysis expander
|
293 |
+
with st.expander("Advanced Analysis"):
|
294 |
+
st.write("""
|
295 |
+
### Detailed Financial Modeling
|
296 |
+
|
297 |
+
For a more accurate financial analysis, consider:
|
298 |
+
- Solar installation costs
|
299 |
+
- Maintenance expenses
|
300 |
+
- Battery storage requirements
|
301 |
+
- Grid feed-in tariffs
|
302 |
+
- Equipment degradation over time
|
303 |
+
""")
|
304 |
+
|
305 |
+
# Sensitivity analysis
|
306 |
+
st.write("### Price Sensitivity Analysis")
|
307 |
+
solar_prices = np.linspace(0, GRID_PRICE, 20)
|
308 |
+
costs = []
|
309 |
+
for price in solar_prices:
|
310 |
+
temp_data = calculate_consumption(ds, st.session_state.solar_ratio)
|
311 |
+
temp_data["solar_price"] = price
|
312 |
+
costs.append(temp_data["total_cost"])
|
313 |
+
|
314 |
+
fig, ax = plt.subplots()
|
315 |
+
sns.lineplot(x=solar_prices, y=costs, ax=ax)
|
316 |
+
ax.set_xlabel("Solar Price (Ksh/kWh)")
|
317 |
+
ax.set_ylabel("Total Daily Cost (Ksh)")
|
318 |
+
ax.axvline(x=optimal_price, color="r", linestyle="--", label="Optimal Price")
|
319 |
+
ax.legend()
|
320 |
+
st.pyplot(fig)
|
321 |
+
|
322 |
+
# Footer
|
323 |
+
st.markdown("---")
|
324 |
+
st.caption("""
|
325 |
+
*Note: This analysis provides estimates only. Consult with a solar energy professional
|
326 |
+
for accurate system sizing and financial projections.*
|
327 |
+
""")
|
328 |
+
|
329 |
+
|
330 |
+
if __name__ == "__main__":
|
331 |
+
main()
|
|
requirements.txt
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
-
streamlit
|
2 |
-
polars
|
3 |
-
xarray
|
4 |
-
seaborn
|
5 |
-
matplotlib
|
6 |
numpy
|
|
|
1 |
+
streamlit
|
2 |
+
polars
|
3 |
+
xarray
|
4 |
+
seaborn
|
5 |
+
matplotlib
|
6 |
numpy
|