Spaces:
Sleeping
Sleeping
Commit
·
c857c28
1
Parent(s):
4e9f3c5
gradio
Browse files- app.py +158 -560
- requirements.txt +1 -0
app.py
CHANGED
@@ -1,88 +1,49 @@
|
|
1 |
-
|
2 |
-
import numpy as np
|
3 |
import pandas as pd
|
4 |
import matplotlib.pyplot as plt
|
5 |
import seaborn as sns
|
6 |
-
import streamlit as st
|
7 |
from typing import Dict
|
8 |
-
from utils.llm import summary_generation
|
9 |
|
|
|
|
|
|
|
10 |
ONE_BR_UNITS = 23
|
11 |
TWO_BR_UNITS = 45
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
LIGHT_POWER = 6 # Watts per light
|
22 |
-
|
23 |
-
|
24 |
-
def initialize_session_state():
|
25 |
-
"""Initialize session state variables"""
|
26 |
-
defaults = {
|
27 |
-
"solar_panels": 100,
|
28 |
-
"batteries": 50,
|
29 |
-
"panel_price": 13000,
|
30 |
-
"battery_price": 39000,
|
31 |
-
"grid_price": 28.44,
|
32 |
}
|
33 |
-
for key, value in defaults.items():
|
34 |
-
if key not in st.session_state:
|
35 |
-
st.session_state[key] = value
|
36 |
|
37 |
|
38 |
-
|
39 |
-
"""Calculate daily lighting consumption"""
|
40 |
-
return (
|
41 |
-
(occupancy_1br * ONE_BR_UNITS * LIGHTS_1BR * LIGHT_POWER / 1000)
|
42 |
-
+ (occupancy_2br * TWO_BR_UNITS * LIGHTS_2BR * LIGHT_POWER / 1000)
|
43 |
-
) * 6 # 6 hours per day
|
44 |
|
45 |
|
46 |
-
|
|
|
47 |
|
48 |
|
49 |
-
def
|
50 |
-
|
51 |
-
|
52 |
-
"""Calculate daily appliance consumption by subtracting the lighting usage from the average total consumption for each house type"""
|
53 |
-
return (
|
54 |
-
occupancy_1br
|
55 |
-
* ONE_BR_UNITS
|
56 |
-
* (3 - (LIGHTS_1BR * LIGHT_POWER * 6 / 1000))
|
57 |
-
# + (500 * 24) # Fridge
|
58 |
-
) + (
|
59 |
-
occupancy_2br
|
60 |
-
* TWO_BR_UNITS
|
61 |
-
* (4 - (LIGHTS_2BR * LIGHT_POWER * 6 / 1000))
|
62 |
-
# + (500 * 24) # Fridge
|
63 |
-
) # Daily kWh
|
64 |
-
|
65 |
-
|
66 |
-
def total_consumption(
|
67 |
-
occupancy_1br: float, occupancy_2br: float, common_area: float
|
68 |
-
) -> float:
|
69 |
-
"""Calculate total monthly consumption"""
|
70 |
-
lighting = calculate_lighting_consumption(occupancy_1br, occupancy_2br)
|
71 |
-
appliances = calculate_appliance_consumption(occupancy_1br, occupancy_2br)
|
72 |
-
return (lighting + appliances + common_area) * 30 # Monthly kWh
|
73 |
|
|
|
|
|
74 |
|
75 |
-
def solar_production(panels: int) -> float:
|
76 |
-
"""Monthly solar production with losses"""
|
77 |
-
daily_production = (
|
78 |
-
panels * SOLAR_PANEL_RATING * 6.5 * (1 - SYSTEM_LOSSES) / 1000
|
79 |
-
) # 6.5 sun hours
|
80 |
-
return daily_production * 30 # Monthly kWh
|
81 |
|
|
|
|
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
86 |
|
87 |
|
88 |
def financial_analysis(
|
@@ -102,12 +63,12 @@ def financial_analysis(
|
|
102 |
# Battery can offset some grid purchases
|
103 |
grid_offset = min(grid_purchased, storage)
|
104 |
grid_purchased -= grid_offset
|
105 |
-
|
106 |
-
monthly_savings = consumption *
|
107 |
|
108 |
total_investment = (
|
109 |
-
|
110 |
-
+
|
111 |
)
|
112 |
|
113 |
# Avoid division by zero
|
@@ -140,517 +101,154 @@ def create_consumption_breakdown(
|
|
140 |
return pd.DataFrame.from_dict(breakdown, orient="index", columns=["kWh"])
|
141 |
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
"""
|
151 |
-
<style>
|
152 |
-
.main .block-container {padding-top: 2rem;}
|
153 |
-
h1, h2, h3 {color: #1E88E5;}
|
154 |
-
.stExpander {border-radius: 8px; border: 1px solid #1E88E5;}
|
155 |
-
.stTabs [data-baseweb="tab-list"] {gap: 10px;}
|
156 |
-
.stTabs [data-baseweb="tab"] {
|
157 |
-
height: 50px;
|
158 |
-
white-space: pre-wrap;
|
159 |
-
background-color: #F0F2F6;
|
160 |
-
border-radius: 4px 4px 0px 0px;
|
161 |
-
gap: 1px;
|
162 |
-
padding-top: 10px;
|
163 |
-
padding-bottom: 10px;
|
164 |
-
}
|
165 |
-
.stTabs [aria-selected="true"] {
|
166 |
-
background-color: #1E88E5;
|
167 |
-
color: white;
|
168 |
-
}
|
169 |
-
</style>
|
170 |
-
""",
|
171 |
-
unsafe_allow_html=True,
|
172 |
-
)
|
173 |
-
|
174 |
-
# Header with logo
|
175 |
-
col1, col2 = st.columns([1, 4])
|
176 |
-
with col1:
|
177 |
-
st.image("https://img.icons8.com/fluency/96/000000/sun.png", width=100)
|
178 |
-
with col2:
|
179 |
-
st.title("🌞 Advanced Solar Performance Analyzer")
|
180 |
-
st.markdown(
|
181 |
-
"Optimize your apartment complex solar installation with data-driven insights"
|
182 |
-
)
|
183 |
-
|
184 |
-
# Sidebar for system configuration
|
185 |
-
with st.sidebar:
|
186 |
-
st.header("System Configuration")
|
187 |
-
|
188 |
-
# Add a nice header image
|
189 |
-
st.image("https://img.icons8.com/color/96/000000/solar-panel.png", width=80)
|
190 |
-
|
191 |
-
# Create tabs for different settings
|
192 |
-
tab1, tab2 = st.tabs(["Hardware", "Pricing"])
|
193 |
-
|
194 |
-
with tab1:
|
195 |
-
st.number_input(
|
196 |
-
"Number of Solar Panels",
|
197 |
-
1,
|
198 |
-
300,
|
199 |
-
step=5,
|
200 |
-
key="solar_panels",
|
201 |
-
help="Each panel rated at 625W",
|
202 |
-
)
|
203 |
-
st.number_input(
|
204 |
-
"Number of Batteries",
|
205 |
-
0,
|
206 |
-
150,
|
207 |
-
step=5,
|
208 |
-
key="batteries",
|
209 |
-
help="Each battery has 200Ah capacity at 12V",
|
210 |
-
)
|
211 |
|
212 |
-
with tab2:
|
213 |
-
st.number_input(
|
214 |
-
"Panel Price (Ksh)",
|
215 |
-
1000,
|
216 |
-
50000,
|
217 |
-
step=500,
|
218 |
-
key="panel_price",
|
219 |
-
help="Cost per solar panel",
|
220 |
-
)
|
221 |
-
st.number_input(
|
222 |
-
"Battery Price (Ksh)",
|
223 |
-
5000,
|
224 |
-
100000,
|
225 |
-
step=1000,
|
226 |
-
key="battery_price",
|
227 |
-
help="Cost per battery unit",
|
228 |
-
)
|
229 |
-
st.number_input(
|
230 |
-
"Grid Price (Ksh/kWh)",
|
231 |
-
10.0,
|
232 |
-
50.0,
|
233 |
-
step=0.1,
|
234 |
-
key="grid_price",
|
235 |
-
help="Current electricity price from the grid",
|
236 |
-
)
|
237 |
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
- **Total Panel Capacity**: {0:.1f} kW
|
243 |
-
- **Total Battery Storage**: {1:.1f} kWh
|
244 |
-
- **Total Investment**: ksh. {2:,.0f}
|
245 |
-
""".format(
|
246 |
-
st.session_state.solar_panels * SOLAR_PANEL_RATING / 1000,
|
247 |
-
battery_storage(st.session_state.batteries),
|
248 |
-
st.session_state.solar_panels * st.session_state.panel_price
|
249 |
-
+ st.session_state.batteries * st.session_state.battery_price,
|
250 |
-
)
|
251 |
-
)
|
252 |
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
# Common area consumption remains constant
|
258 |
-
common_area_consumption = 23.544 # kWh per day
|
259 |
-
|
260 |
-
# Generate scenarios with different occupancy combinations
|
261 |
-
occupancy_levels = [0.0, 0.25, 0.50, 0.75, 1.0]
|
262 |
-
|
263 |
-
# Create scenarios for 1BR fixed, varying 2BR
|
264 |
-
for br1_level in occupancy_levels:
|
265 |
-
for br2_level in occupancy_levels:
|
266 |
-
scenario_name = f"1BR: {int(br1_level*100)}%, 2BR: {int(br2_level*100)}%"
|
267 |
-
scenarios[scenario_name] = {
|
268 |
-
"1br": br1_level,
|
269 |
-
"2br": br2_level,
|
270 |
-
"common": common_area_consumption,
|
271 |
-
}
|
272 |
-
|
273 |
-
# Analysis tabs
|
274 |
-
st.markdown("---")
|
275 |
-
tab1, tab2, tab3 = st.tabs(
|
276 |
-
["📊 Energy Analysis", "💰 Financial Metrics", "🔍 Detailed Breakdown"]
|
277 |
)
|
278 |
|
279 |
-
#
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
["All"] + [f"{int(level*100)}%" for level in occupancy_levels],
|
300 |
-
help="Filter scenarios by 1BR occupancy level",
|
301 |
-
)
|
302 |
-
|
303 |
-
# Filter the dataframe based on selection
|
304 |
-
filtered_df = df
|
305 |
-
if one_br_filter != "All":
|
306 |
-
occupancy_value = int(one_br_filter.replace("%", ""))
|
307 |
-
filtered_df = df[df["Scenario"].str.contains(f"1BR: {occupancy_value}%")]
|
308 |
-
|
309 |
-
# Chart 1: Energy Balance
|
310 |
-
st.subheader("Energy Balance by Scenario")
|
311 |
-
|
312 |
-
energy_fig = plt.figure(figsize=(12, 7))
|
313 |
-
ax = energy_fig.add_subplot(111)
|
314 |
-
|
315 |
-
# Create data for stacked bar chart
|
316 |
-
chart_data = filtered_df.copy()
|
317 |
-
chart_data["grid_energy"] = chart_data["grid_purchased"]
|
318 |
-
chart_data["solar_energy"] = (
|
319 |
-
chart_data["consumption"] - chart_data["grid_purchased"]
|
320 |
-
)
|
321 |
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
# Reshape for seaborn
|
333 |
-
energy_melt = pd.melt(
|
334 |
-
energy_proportions,
|
335 |
-
id_vars=["Scenario"],
|
336 |
-
value_vars=["solar_energy", "grid_energy"],
|
337 |
-
var_name="Energy Source",
|
338 |
-
value_name="Percentage",
|
339 |
-
)
|
340 |
|
341 |
-
# Rename for better labels
|
342 |
-
energy_melt["Energy Source"] = energy_melt["Energy Source"].replace(
|
343 |
-
{"solar_energy": "Solar Generated", "grid_energy": "Grid Purchased"}
|
344 |
-
)
|
345 |
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
y="Percentage",
|
352 |
-
hue="Energy Source",
|
353 |
-
palette=["#4CAF50", "#F44336"],
|
354 |
-
ax=ax,
|
355 |
-
)
|
356 |
-
ax.set_ylabel("Energy Contribution (%)")
|
357 |
-
ax.set_title("Energy Source Distribution by Occupancy Scenario")
|
358 |
-
plt.xticks(rotation=45, ha="right")
|
359 |
-
plt.tight_layout()
|
360 |
-
st.pyplot(energy_fig)
|
361 |
-
|
362 |
-
# Detailed metrics
|
363 |
-
col1, col2, col3 = st.columns(3)
|
364 |
-
with col1:
|
365 |
-
st.metric(
|
366 |
-
"Avg. Solar Contribution",
|
367 |
-
f"{filtered_df['solar_contribution'].mean():.1f}%",
|
368 |
-
(
|
369 |
-
f"{filtered_df['solar_contribution'].mean() - 50:.1f}%"
|
370 |
-
if filtered_df["solar_contribution"].mean() > 50
|
371 |
-
else f"{filtered_df['solar_contribution'].mean() - 50:.1f}%"
|
372 |
-
),
|
373 |
-
)
|
374 |
-
with col2:
|
375 |
-
st.metric(
|
376 |
-
"Avg. Grid Dependency",
|
377 |
-
f"{filtered_df['grid_dependency'].mean():.1f}%",
|
378 |
-
(
|
379 |
-
f"{50 - filtered_df['grid_dependency'].mean():.1f}%"
|
380 |
-
if filtered_df["grid_dependency"].mean() < 50
|
381 |
-
else f"{50 - filtered_df['grid_dependency'].mean():.1f}%"
|
382 |
-
),
|
383 |
-
)
|
384 |
-
with col3:
|
385 |
-
st.metric(
|
386 |
-
"Production/Consumption Ratio",
|
387 |
-
f"{(filtered_df['production'].mean() / filtered_df['consumption'].mean() * 100):.1f}%",
|
388 |
-
)
|
389 |
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
**Understanding the Chart:**
|
394 |
-
- **Solar Contribution**: Percentage of total energy needs met directly by solar production
|
395 |
-
- **Grid Dependency**: Remaining energy required from the grid
|
396 |
-
- The ideal scenario shows high solar contribution with minimal grid dependency
|
397 |
-
|
398 |
-
**Key Factors Affecting Energy Balance:**
|
399 |
-
1. **Occupancy Levels**: Higher occupancy means higher consumption, which may exceed solar capacity
|
400 |
-
2. **Solar System Size**: More panels increase production and reduce grid dependency
|
401 |
-
3. **Battery Storage**: Helps utilize excess daytime production for nighttime use
|
402 |
-
"""
|
403 |
-
)
|
404 |
|
405 |
-
|
406 |
-
|
407 |
-
|
|
|
|
|
|
|
|
|
408 |
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
|
|
|
|
|
|
|
|
415 |
|
416 |
-
|
417 |
-
filtered_fin_df = df
|
418 |
-
if two_br_filter != "All":
|
419 |
-
occupancy_value = int(two_br_filter.replace("%", ""))
|
420 |
-
filtered_fin_df = df[
|
421 |
-
df["Scenario"].str.contains(f"2BR: {occupancy_value}%")
|
422 |
-
]
|
423 |
-
|
424 |
-
# Monthly Savings Chart
|
425 |
-
st.subheader("Monthly Cost Savings")
|
426 |
-
|
427 |
-
# Fix large values
|
428 |
-
filtered_fin_df["monthly_savings_fixed"] = filtered_fin_df[
|
429 |
-
"monthly_savings"
|
430 |
-
].clip(0, 100000)
|
431 |
-
|
432 |
-
fig1, ax1 = plt.subplots(figsize=(12, 6))
|
433 |
-
sns.barplot(
|
434 |
-
data=filtered_fin_df,
|
435 |
-
x="Scenario",
|
436 |
-
y="monthly_savings_fixed",
|
437 |
-
palette="viridis",
|
438 |
-
ax=ax1,
|
439 |
-
)
|
440 |
-
ax1.set_title("Monthly Cost Savings by Scenario")
|
441 |
-
ax1.set_ylabel("Ksh")
|
442 |
-
plt.xticks(rotation=45, ha="right")
|
443 |
-
plt.tight_layout()
|
444 |
-
st.pyplot(fig1)
|
445 |
-
|
446 |
-
# Payback Period Chart
|
447 |
-
st.subheader("System Payback Period")
|
448 |
-
|
449 |
-
# Fix large values
|
450 |
-
filtered_fin_df["payback_period_fixed"] = filtered_fin_df[
|
451 |
-
"payback_period"
|
452 |
-
].clip(0, 30)
|
453 |
-
|
454 |
-
fig2, ax2 = plt.subplots(figsize=(12, 6))
|
455 |
-
sns.barplot(
|
456 |
-
data=filtered_fin_df,
|
457 |
-
x="Scenario",
|
458 |
-
y="payback_period_fixed",
|
459 |
-
palette="rocket_r",
|
460 |
-
ax=ax2,
|
461 |
-
)
|
462 |
-
ax2.set_title("Investment Payback Period by Scenario")
|
463 |
-
ax2.set_ylabel("Years")
|
464 |
-
plt.xticks(rotation=45, ha="right")
|
465 |
-
plt.tight_layout()
|
466 |
-
st.pyplot(fig2)
|
467 |
-
|
468 |
-
# Financial summary metrics
|
469 |
-
col1, col2, col3 = st.columns(3)
|
470 |
-
with col1:
|
471 |
-
avg_savings = filtered_fin_df["monthly_savings"].mean()
|
472 |
-
st.metric(
|
473 |
-
"Avg. Monthly Savings",
|
474 |
-
f"{avg_savings:,.0f} Ksh",
|
475 |
-
(
|
476 |
-
f"{avg_savings - df['monthly_savings'].mean():,.0f} Ksh"
|
477 |
-
if avg_savings > df["monthly_savings"].mean()
|
478 |
-
else f"{avg_savings - df['monthly_savings'].mean():,.0f} Ksh"
|
479 |
-
),
|
480 |
-
)
|
481 |
-
with col2:
|
482 |
-
min_payback = filtered_fin_df["payback_period"].min()
|
483 |
-
st.metric(
|
484 |
-
"Best Payback Period",
|
485 |
-
f"{min_payback:.1f} years",
|
486 |
-
help="Shortest time to recover investment",
|
487 |
-
)
|
488 |
-
with col3:
|
489 |
-
total_investment = (
|
490 |
-
st.session_state.solar_panels * st.session_state.panel_price
|
491 |
-
+ st.session_state.batteries * st.session_state.battery_price
|
492 |
-
)
|
493 |
-
annual_roi = (
|
494 |
-
(avg_savings * 12 / total_investment) * 100
|
495 |
-
if total_investment > 0
|
496 |
-
else 0
|
497 |
-
)
|
498 |
-
st.metric(
|
499 |
-
"Annual ROI", f"{annual_roi:.1f}%", help="Annual Return on Investment"
|
500 |
-
)
|
501 |
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
**Investment Details:**
|
506 |
-
- Total Solar Panel Investment: {st.session_state.solar_panels:,} panels × {st.session_state.panel_price:,} Ksh = {st.session_state.solar_panels * st.session_state.panel_price:,} Ksh
|
507 |
-
- Total Battery Investment: {st.session_state.batteries:,} batteries × {st.session_state.battery_price:,} Ksh = {st.session_state.batteries * st.session_state.battery_price:,} Ksh
|
508 |
-
- Total System Cost: {total_investment:,} Ksh
|
509 |
-
|
510 |
-
**Savings Calculation:**
|
511 |
-
- Grid Price: {st.session_state.grid_price} Ksh/kWh
|
512 |
-
- Monthly Savings =(Total Consumption - Common Area) × Grid Price
|
513 |
-
- Payback Period = Total Investment / Annual Savings
|
514 |
-
|
515 |
-
**Filtered Scenario Data:**
|
516 |
-
"""
|
517 |
-
)
|
518 |
-
st.dataframe(
|
519 |
-
filtered_fin_df[
|
520 |
-
[
|
521 |
-
"Scenario",
|
522 |
-
"consumption",
|
523 |
-
"production",
|
524 |
-
"monthly_savings",
|
525 |
-
"payback_period",
|
526 |
-
]
|
527 |
-
].sort_values("monthly_savings", ascending=False),
|
528 |
-
hide_index=True,
|
529 |
)
|
530 |
-
|
531 |
-
|
532 |
-
with st.spinner("Generating insights with AI..."):
|
533 |
-
analysis = summary_generation(filtered_fin_df)
|
534 |
-
st.success("Analysis Complete!")
|
535 |
-
st.write(analysis) # Display the results
|
536 |
-
|
537 |
-
# Tab 3: Detailed Breakdown
|
538 |
-
with tab3:
|
539 |
-
st.header("Consumption Breakdown Analysis")
|
540 |
-
|
541 |
-
# Select specific scenario for detailed analysis
|
542 |
-
scenario_select = st.selectbox(
|
543 |
-
"Select Specific Scenario", list(scenarios.keys())
|
544 |
-
)
|
545 |
-
selected_params = scenarios[scenario_select]
|
546 |
-
|
547 |
-
# Create consumption breakdown
|
548 |
-
breakdown_df = create_consumption_breakdown(
|
549 |
-
selected_params["1br"], selected_params["2br"], selected_params["common"]
|
550 |
-
)
|
551 |
-
|
552 |
-
total_kwh = breakdown_df["kWh"].sum()
|
553 |
-
|
554 |
-
# Add percentage column
|
555 |
-
breakdown_df["Percentage"] = (breakdown_df["kWh"] / total_kwh * 100).round(1)
|
556 |
-
|
557 |
-
col1, col2 = st.columns([2, 3])
|
558 |
-
|
559 |
-
with col1:
|
560 |
-
st.subheader("Energy Composition")
|
561 |
-
|
562 |
-
# Create a more attractive pie chart
|
563 |
-
fig3 = plt.figure(figsize=(8, 8))
|
564 |
-
ax3 = fig3.add_subplot(111)
|
565 |
-
|
566 |
-
colors = ["#FF9800", "#2196F3", "#4CAF50"]
|
567 |
-
explode = (0.1, 0, 0)
|
568 |
-
|
569 |
-
wedges, texts, autotexts = ax3.pie(
|
570 |
-
breakdown_df["kWh"],
|
571 |
-
labels=breakdown_df.index,
|
572 |
-
autopct="%1.1f%%",
|
573 |
-
explode=explode,
|
574 |
-
colors=colors,
|
575 |
-
shadow=True,
|
576 |
-
startangle=90,
|
577 |
-
textprops={"fontsize": 12},
|
578 |
)
|
579 |
-
|
580 |
-
|
581 |
-
ax3.axis("equal")
|
582 |
-
plt.tight_layout()
|
583 |
-
st.pyplot(fig3)
|
584 |
-
|
585 |
-
# Show total consumption
|
586 |
-
st.metric(
|
587 |
-
"Total Monthly Consumption",
|
588 |
-
f"{total_kwh:.1f} kWh",
|
589 |
-
help="Sum of all consumption components",
|
590 |
)
|
591 |
|
592 |
-
with
|
593 |
-
|
594 |
-
|
595 |
-
# Show breakdown as a horizontal bar chart
|
596 |
-
fig4 = plt.figure(figsize=(10, 5))
|
597 |
-
ax4 = fig4.add_subplot(111)
|
598 |
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
# Create horizontal bar chart
|
603 |
-
bars = sns.barplot(
|
604 |
-
y=sorted_df.index, x="kWh", data=sorted_df, palette=colors[::-1], ax=ax4
|
605 |
-
)
|
606 |
-
|
607 |
-
# Add data labels
|
608 |
-
for i, v in enumerate(sorted_df["kWh"]):
|
609 |
-
ax4.text(
|
610 |
-
v + 5,
|
611 |
-
i,
|
612 |
-
f"{v:.1f} kWh ({sorted_df['Percentage'].iloc[i]}%)",
|
613 |
-
va="center",
|
614 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
615 |
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
**Scenario Details:**
|
626 |
-
- 1BR Units Occupancy: {selected_params['1br']*100:.0f}% ({selected_params['1br']*ONE_BR_UNITS:.0f} units)
|
627 |
-
- 2BR Units Occupancy: {selected_params['2br']*100:.0f}% ({selected_params['2br']*TWO_BR_UNITS:.0f} units)
|
628 |
-
- Common Areas Consumption: {selected_params['common']*30:.1f} kWh/month
|
629 |
-
"""
|
630 |
-
)
|
631 |
-
|
632 |
-
# Insight box
|
633 |
-
st.info(
|
634 |
-
f"""
|
635 |
-
**Key Insights for {scenario_select}:**
|
636 |
-
- Lighting contributes {breakdown_df.loc['Lighting', 'Percentage']:.1f}% of total consumption
|
637 |
-
- Common areas account for {breakdown_df.loc['Common Areas', 'Percentage']:.1f}% of the total
|
638 |
-
- {'2BR units dominate consumption at ' + str(selected_params['2br']*100) + '% occupancy' if selected_params['2br'] > selected_params['1br'] else '1BR units are the primary consumers at ' + str(selected_params['1br']*100) + '% occupancy'}
|
639 |
-
- Total potential solar offset: {min(solar_production(st.session_state.solar_panels)/total_kwh*100, 100):.1f}%
|
640 |
-
"""
|
641 |
-
)
|
642 |
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
<div style="text-align: center; color: #666;">
|
648 |
-
<p>Solar Analysis Suite v1.0 | Developed with ❤️ for sustainable energy solutions</p>
|
649 |
-
</div>
|
650 |
-
""",
|
651 |
-
unsafe_allow_html=True,
|
652 |
)
|
653 |
|
|
|
|
|
|
|
|
|
|
|
|
|
654 |
|
655 |
if __name__ == "__main__":
|
656 |
-
|
|
|
1 |
+
import gradio as gr
|
|
|
2 |
import pandas as pd
|
3 |
import matplotlib.pyplot as plt
|
4 |
import seaborn as sns
|
|
|
5 |
from typing import Dict
|
|
|
6 |
|
7 |
+
# Constants (replace with your actual values)
|
8 |
+
FEED_IN_TARIFF = 12.0 # Example value in cents/kWh
|
9 |
+
SOLAR_PANEL_RATING = 625 # Watts
|
10 |
ONE_BR_UNITS = 23
|
11 |
TWO_BR_UNITS = 45
|
12 |
+
|
13 |
+
|
14 |
+
def initialize_state():
|
15 |
+
return {
|
16 |
+
"solar_panels": 20,
|
17 |
+
"batteries": 5,
|
18 |
+
"panel_price": 25000,
|
19 |
+
"battery_price": 50000,
|
20 |
+
"grid_price": 24.0,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
}
|
|
|
|
|
|
|
22 |
|
23 |
|
24 |
+
state = initialize_state()
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
|
27 |
+
def battery_storage(num_batteries):
|
28 |
+
return num_batteries * 2.4 # kWh per battery
|
29 |
|
30 |
|
31 |
+
def solar_production(num_panels):
|
32 |
+
return num_panels * SOLAR_PANEL_RATING / 1000 * 5 # 5 sun hours per day
|
33 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
def calculate_lighting_consumption(occupancy_1br, occupancy_2br):
|
36 |
+
return (occupancy_1br * ONE_BR_UNITS * 0.5) + (occupancy_2br * TWO_BR_UNITS * 0.8)
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
def calculate_appliance_consumption(occupancy_1br, occupancy_2br):
|
40 |
+
return (occupancy_1br * ONE_BR_UNITS * 2.0) + (occupancy_2br * TWO_BR_UNITS * 3.0)
|
41 |
|
42 |
+
|
43 |
+
def total_consumption(occupancy_1br, occupancy_2br, common_area):
|
44 |
+
lighting = calculate_lighting_consumption(occupancy_1br, occupancy_2br)
|
45 |
+
appliances = calculate_appliance_consumption(occupancy_1br, occupancy_2br)
|
46 |
+
return lighting + appliances + common_area
|
47 |
|
48 |
|
49 |
def financial_analysis(
|
|
|
63 |
# Battery can offset some grid purchases
|
64 |
grid_offset = min(grid_purchased, storage)
|
65 |
grid_purchased -= grid_offset
|
66 |
+
|
67 |
+
monthly_savings = consumption * state["grid_price"] / 100
|
68 |
|
69 |
total_investment = (
|
70 |
+
state["solar_panels"] * state["panel_price"]
|
71 |
+
+ state["batteries"] * state["battery_price"]
|
72 |
)
|
73 |
|
74 |
# Avoid division by zero
|
|
|
101 |
return pd.DataFrame.from_dict(breakdown, orient="index", columns=["kWh"])
|
102 |
|
103 |
|
104 |
+
def update_state(solar_panels, batteries, panel_price, battery_price, grid_price):
|
105 |
+
state["solar_panels"] = solar_panels
|
106 |
+
state["batteries"] = batteries
|
107 |
+
state["panel_price"] = panel_price
|
108 |
+
state["battery_price"] = battery_price
|
109 |
+
state["grid_price"] = grid_price
|
110 |
+
return state
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
+
def analyze_scenario(occupancy_1br, occupancy_2br, common_area):
|
114 |
+
consumption = total_consumption(occupancy_1br, occupancy_2br, common_area)
|
115 |
+
production = solar_production(state["solar_panels"])
|
116 |
+
storage = battery_storage(state["batteries"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
+
financials = financial_analysis(consumption, common_area, production, storage)
|
119 |
+
breakdown_df = create_consumption_breakdown(
|
120 |
+
occupancy_1br, occupancy_2br, common_area
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
)
|
122 |
|
123 |
+
# Create plots
|
124 |
+
fig1, ax1 = plt.subplots(figsize=(10, 5))
|
125 |
+
energy_sources = ["Solar", "Grid"]
|
126 |
+
values = [financials["solar_contribution"], financials["grid_dependency"]]
|
127 |
+
ax1.bar(energy_sources, values, color=["#4CAF50", "#F44336"])
|
128 |
+
ax1.set_ylabel("Percentage (%)")
|
129 |
+
ax1.set_title("Energy Contribution")
|
130 |
+
|
131 |
+
fig2, ax2 = plt.subplots(figsize=(8, 8))
|
132 |
+
breakdown_df["Percentage"] = (
|
133 |
+
breakdown_df["kWh"] / breakdown_df["kWh"].sum() * 100
|
134 |
+
).round(1)
|
135 |
+
breakdown_df.plot.pie(
|
136 |
+
y="kWh",
|
137 |
+
labels=breakdown_df.index,
|
138 |
+
autopct="%1.1f%%",
|
139 |
+
colors=["#FF9800", "#2196F3", "#4CAF50"],
|
140 |
+
ax=ax2,
|
141 |
+
)
|
142 |
+
ax2.set_ylabel("")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
+
return (
|
145 |
+
f"Total Consumption: {consumption:.1f} kWh/day\n"
|
146 |
+
f"Solar Production: {production:.1f} kWh/day\n"
|
147 |
+
f"Solar Contribution: {financials['solar_contribution']:.1f}%\n"
|
148 |
+
f"Monthly Savings: {financials['monthly_savings']:,.0f} Ksh\n"
|
149 |
+
f"Payback Period: {financials['payback_period']:.1f} years",
|
150 |
+
fig1,
|
151 |
+
fig2,
|
152 |
+
breakdown_df,
|
153 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
|
|
|
|
|
|
|
|
155 |
|
156 |
+
with gr.Blocks(title="Solar Analysis Suite", theme=gr.themes.Soft()) as demo:
|
157 |
+
gr.Markdown("# 🌞 Advanced Solar Performance Analyzer")
|
158 |
+
gr.Markdown(
|
159 |
+
"Optimize your apartment complex solar installation with data-driven insights"
|
160 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
+
with gr.Row():
|
163 |
+
with gr.Column(scale=1):
|
164 |
+
gr.Markdown("## System Configuration")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
+
with gr.Tab("Hardware"):
|
167 |
+
solar_panels = gr.Slider(
|
168 |
+
1, 300, value=20, step=5, label="Number of Solar Panels"
|
169 |
+
)
|
170 |
+
batteries = gr.Slider(
|
171 |
+
0, 150, value=5, step=5, label="Number of Batteries"
|
172 |
+
)
|
173 |
|
174 |
+
with gr.Tab("Pricing"):
|
175 |
+
panel_price = gr.Slider(
|
176 |
+
1000, 50000, value=25000, step=500, label="Panel Price (Ksh)"
|
177 |
+
)
|
178 |
+
battery_price = gr.Slider(
|
179 |
+
5000, 100000, value=50000, step=1000, label="Battery Price (Ksh)"
|
180 |
+
)
|
181 |
+
grid_price = gr.Slider(
|
182 |
+
10.0, 50.0, value=24.0, step=0.1, label="Grid Price (Ksh/kWh)"
|
183 |
+
)
|
184 |
|
185 |
+
update_btn = gr.Button("Update System Configuration")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
|
187 |
+
gr.Markdown("### System Totals")
|
188 |
+
total_panel = gr.Textbox(
|
189 |
+
label="Total Panel Capacity (kW)", interactive=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
)
|
191 |
+
total_battery = gr.Textbox(
|
192 |
+
label="Total Battery Storage (kWh)", interactive=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
)
|
194 |
+
total_investment = gr.Textbox(
|
195 |
+
label="Total Investment (Ksh)", interactive=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
)
|
197 |
|
198 |
+
with gr.Column(scale=2):
|
199 |
+
gr.Markdown("## Scenario Analysis")
|
|
|
|
|
|
|
|
|
200 |
|
201 |
+
with gr.Tab("Input Parameters"):
|
202 |
+
occupancy_1br = gr.Slider(
|
203 |
+
0.0, 1.0, value=0.5, step=0.25, label="1BR Occupancy Rate"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
)
|
205 |
+
occupancy_2br = gr.Slider(
|
206 |
+
0.0, 1.0, value=0.5, step=0.25, label="2BR Occupancy Rate"
|
207 |
+
)
|
208 |
+
common_area = gr.Number(
|
209 |
+
value=23.544, label="Common Area Consumption (kWh/day)"
|
210 |
+
)
|
211 |
+
analyze_btn = gr.Button("Analyze Scenario")
|
212 |
+
|
213 |
+
with gr.Tab("Results"):
|
214 |
+
results_text = gr.Textbox(label="Analysis Results", lines=5)
|
215 |
+
energy_plot = gr.Plot(label="Energy Contribution")
|
216 |
+
breakdown_plot = gr.Plot(label="Consumption Breakdown")
|
217 |
+
breakdown_table = gr.Dataframe(label="Detailed Breakdown")
|
218 |
+
|
219 |
+
# Update system totals when configuration changes
|
220 |
+
def update_totals(solar_panels, batteries, panel_price, battery_price):
|
221 |
+
panel_kw = solar_panels * SOLAR_PANEL_RATING / 1000
|
222 |
+
battery_kwh = battery_storage(batteries)
|
223 |
+
investment = solar_panels * panel_price + batteries * battery_price
|
224 |
+
return (
|
225 |
+
f"{panel_kw:.1f} kW",
|
226 |
+
f"{battery_kwh:.1f} kWh",
|
227 |
+
f"{investment:,.0f} Ksh",
|
228 |
+
)
|
229 |
|
230 |
+
update_btn.click(
|
231 |
+
update_state,
|
232 |
+
inputs=[solar_panels, batteries, panel_price, battery_price, grid_price],
|
233 |
+
outputs=None,
|
234 |
+
).then(
|
235 |
+
update_totals,
|
236 |
+
inputs=[solar_panels, batteries, panel_price, battery_price],
|
237 |
+
outputs=[total_panel, total_battery, total_investment],
|
238 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
|
240 |
+
analyze_btn.click(
|
241 |
+
analyze_scenario,
|
242 |
+
inputs=[occupancy_1br, occupancy_2br, common_area],
|
243 |
+
outputs=[results_text, energy_plot, breakdown_plot, breakdown_table],
|
|
|
|
|
|
|
|
|
|
|
244 |
)
|
245 |
|
246 |
+
# Initialize with default values
|
247 |
+
demo.load(
|
248 |
+
update_totals,
|
249 |
+
inputs=[solar_panels, batteries, panel_price, battery_price],
|
250 |
+
outputs=[total_panel, total_battery, total_investment],
|
251 |
+
)
|
252 |
|
253 |
if __name__ == "__main__":
|
254 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -6,3 +6,4 @@ matplotlib
|
|
6 |
numpy
|
7 |
transformers
|
8 |
torch
|
|
|
|
6 |
numpy
|
7 |
transformers
|
8 |
torch
|
9 |
+
gradio
|