|
|
|
from __future__ import annotations |
|
|
|
import os |
|
import random |
|
import time |
|
|
|
import gradio as gr |
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
from lcm_pipeline import LatentConsistencyModelPipeline |
|
from lcm_scheduler import LCMScheduler |
|
|
|
from diffusers import AutoencoderKL, UNet2DConditionModel |
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker |
|
from transformers import CLIPTokenizer, CLIPTextModel, CLIPImageProcessor |
|
|
|
import os |
|
import torch |
|
from tqdm import tqdm |
|
from safetensors.torch import load_file |
|
from huggingface_hub import hf_hub_download |
|
|
|
DESCRIPTION = '''# Latent Consistency Model |
|
Distilled from Dreamshaper v7 fine-tune of [Stable Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5). [Project page](https://latent-consistency-models.github.io) |
|
''' |
|
if not torch.cuda.is_available(): |
|
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1" |
|
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "768")) |
|
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1" |
|
DTYPE = torch.float32 |
|
|
|
model_id = "digiplay/DreamShaper_7" |
|
|
|
|
|
|
|
vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae") |
|
text_encoder = CLIPTextModel.from_pretrained(model_id, subfolder="text_encoder") |
|
tokenizer = CLIPTokenizer.from_pretrained(model_id, subfolder="tokenizer") |
|
config = UNet2DConditionModel.load_config(model_id, subfolder="unet") |
|
config["time_cond_proj_dim"] = 256 |
|
|
|
unet = UNet2DConditionModel.from_config(config) |
|
safety_checker = StableDiffusionSafetyChecker.from_pretrained(model_id, subfolder="safety_checker") |
|
feature_extractor = CLIPImageProcessor.from_pretrained(model_id, subfolder="feature_extractor") |
|
|
|
|
|
scheduler = LCMScheduler(beta_start=0.00085, beta_end=0.0120, beta_schedule="scaled_linear", prediction_type="epsilon") |
|
|
|
HF_TOKEN = os.environ.get("HF_TOKEN", None) |
|
|
|
if torch.cuda.is_available(): |
|
|
|
|
|
lcm_unet_ckpt = "./LCM_Dreamshaper_v7_4k.safetensors" |
|
ckpt = load_file(lcm_unet_ckpt) |
|
m, u = unet.load_state_dict(ckpt, strict=False) |
|
if len(m) > 0: |
|
print("missing keys:") |
|
print(m) |
|
if len(u) > 0: |
|
print("unexpected keys:") |
|
print(u) |
|
|
|
|
|
|
|
pipe = LatentConsistencyModelPipeline(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor) |
|
pipe = pipe.to(torch_device="cuda", torch_dtype=DTYPE) |
|
|
|
if USE_TORCH_COMPILE: |
|
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) |
|
|
|
|
|
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
return seed |
|
|
|
def generate( |
|
prompt: str, |
|
seed: int = 0, |
|
width: int = 512, |
|
height: int = 512, |
|
guidance_scale: float = 8.0, |
|
num_inference_steps: int = 4, |
|
num_images: int = 4, |
|
randomize_seed: bool = False, |
|
progress = gr.Progress(track_tqdm=True) |
|
) -> PIL.Image.Image: |
|
seed = randomize_seed_fn(seed, randomize_seed) |
|
torch.manual_seed(seed) |
|
start_time = time.time() |
|
result = pipe( |
|
prompt=prompt, |
|
width=width, |
|
height=height, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
num_images_per_prompt=num_images, |
|
lcm_origin_steps=50, |
|
output_type="pil", |
|
).images |
|
|
|
print(time.time() - start_time) |
|
return result, seed |
|
|
|
examples = [ |
|
"portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography", |
|
"Self-portrait oil painting, a beautiful cyborg with golden hair, 8k", |
|
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", |
|
"A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece", |
|
] |
|
|
|
with gr.Blocks(css="style.css") as demo: |
|
gr.Markdown(DESCRIPTION) |
|
gr.DuplicateButton( |
|
value="Duplicate Space for private use", |
|
elem_id="duplicate-button", |
|
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", |
|
) |
|
with gr.Group(): |
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
run_button = gr.Button("Run", scale=0) |
|
result = gr.Gallery( |
|
label="Generated images", show_label=False, elem_id="gallery", grid=[2] |
|
) |
|
with gr.Accordion("Advanced options", open=False): |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
randomize=True |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed across runs", value=True) |
|
with gr.Row(): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=512, |
|
) |
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=512, |
|
) |
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance scale for base", |
|
minimum=2, |
|
maximum=14, |
|
step=0.1, |
|
value=8.0, |
|
) |
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps for base", |
|
minimum=1, |
|
maximum=8, |
|
step=1, |
|
value=4, |
|
) |
|
with gr.Row(): |
|
num_images = gr.Slider( |
|
label="Number of images" |
|
minimum=1, |
|
maximum=8, |
|
step=1, |
|
value=4, |
|
visible=False, |
|
) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=prompt, |
|
outputs=result, |
|
fn=generate, |
|
cache_examples=CACHE_EXAMPLES, |
|
) |
|
|
|
gr.on( |
|
triggers=[ |
|
prompt.submit, |
|
run_button.click, |
|
], |
|
fn=generate, |
|
inputs=[ |
|
prompt, |
|
seed, |
|
width, |
|
height, |
|
guidance_scale, |
|
num_inference_steps, |
|
num_images, |
|
randomize_seed |
|
], |
|
outputs=[result, seed], |
|
api_name="run", |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(api_open=False) |
|
|
|
demo.launch() |
|
|