Update app_demo.py
Browse files- app_demo.py +42 -147
app_demo.py
CHANGED
@@ -17,123 +17,59 @@ from tqdm import tqdm
|
|
17 |
from safetensors.torch import load_file
|
18 |
import cv2
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
#DESCRIPTION = '''# Fast Stable Diffusion CPU with Latent Consistency Model
|
25 |
-
#Distilled from [Dreamshaper v7](https://huggingface.co/Lykon/dreamshaper-7) fine‑tune of SD v1-5.
|
26 |
-
#'''
|
27 |
-
#if not torch.cuda.is_available():
|
28 |
-
#DESCRIPTION += "\n<p>running on CPU.</p>"
|
29 |
MAX_SEED = np.iinfo(np.int32).max
|
30 |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
|
31 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "768"))
|
32 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
33 |
-
DTYPE = torch.float32
|
34 |
api = HfApi()
|
35 |
executor = ThreadPoolExecutor()
|
36 |
model_cache = {}
|
37 |
|
38 |
-
#custom
|
39 |
model_id = "Lykon/dreamshaper-xl-v2-turbo"
|
40 |
custom_pipe = DiffusionPipeline.from_pretrained(model_id, custom_pipeline="latent_consistency_txt2img", custom_revision="main")
|
41 |
-
#1st
|
42 |
pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="latent_consistency_txt2img", custom_revision="main")
|
43 |
pipe.to(torch_device="cpu", torch_dtype=DTYPE)
|
44 |
pipe.safety_checker = None
|
45 |
-
|
46 |
-
# Load pipeline once, disabling NSFW filter at construction time
|
47 |
pipe = StableDiffusionPipeline.from_pretrained(
|
48 |
-
model_id,
|
|
|
49 |
|
50 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
51 |
-
if randomize_seed
|
52 |
-
|
53 |
-
return seed
|
54 |
|
55 |
def save_image(img, profile: gr.OAuthProfile | None, metadata: dict):
|
56 |
unique_name = str(uuid.uuid4()) + '.png'
|
57 |
img.save(unique_name)
|
58 |
gr_user_history.save_image(label=metadata["prompt"], image=img, profile=profile, metadata=metadata)
|
59 |
-
|
60 |
return unique_name
|
61 |
|
62 |
-
|
63 |
-
# with ThreadPoolExecutor() as executor:
|
64 |
-
# return list(executor.map(
|
65 |
-
# lambda args: save_image(*args),
|
66 |
-
# zip(image_array, [profile]*len(image_array), [metadata]*len(image_array))
|
67 |
-
# ))
|
68 |
def save_images(image_array, profile: gr.OAuthProfile | None, metadata: dict):
|
69 |
-
paths = []
|
70 |
with ThreadPoolExecutor() as executor:
|
71 |
-
|
72 |
-
return paths
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
num_inference_steps: int = 4,
|
81 |
-
num_images: int = 1,
|
82 |
-
randomize_seed: bool = False,
|
83 |
-
progress = gr.Progress(track_tqdm=True),
|
84 |
-
profile: gr.OAuthProfile | None = None,
|
85 |
-
) -> tuple[list[str], int]:
|
86 |
-
# prepare seed
|
87 |
seed = randomize_seed_fn(seed, randomize_seed)
|
88 |
torch.manual_seed(seed)
|
89 |
start_time = time.time()
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
num_images_per_prompt=num_images,
|
99 |
-
output_type="pil",
|
100 |
-
lcm_origin_steps=50,
|
101 |
-
).images
|
102 |
-
|
103 |
-
latency = time.time() - start_time
|
104 |
-
print(f"Generation took {latency:.2f} seconds")
|
105 |
-
|
106 |
-
paths = save_images(
|
107 |
-
outputs,
|
108 |
-
profile,
|
109 |
-
metadata={
|
110 |
-
"prompt": prompt,
|
111 |
-
"seed": seed,
|
112 |
-
"width": width,
|
113 |
-
"height": height,
|
114 |
-
"guidance_scale": guidance_scale,
|
115 |
-
"num_inference_steps": num_inference_steps,
|
116 |
-
}
|
117 |
-
)
|
118 |
-
|
119 |
return paths, seed
|
120 |
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
def validate_and_list_models(hfuser):
|
138 |
try:
|
139 |
models = api.list_models(author=hfuser)
|
@@ -141,6 +77,7 @@ def validate_and_list_models(hfuser):
|
|
141 |
except Exception:
|
142 |
return []
|
143 |
|
|
|
144 |
def parse_user_model_dict(user_model_dict_str):
|
145 |
try:
|
146 |
data = ast.literal_eval(user_model_dict_str)
|
@@ -150,6 +87,7 @@ def parse_user_model_dict(user_model_dict_str):
|
|
150 |
except Exception:
|
151 |
return {}
|
152 |
|
|
|
153 |
def load_model(model_id):
|
154 |
if model_id in model_cache:
|
155 |
return f"{model_id} loaded from cache"
|
@@ -160,24 +98,23 @@ def load_model(model_id):
|
|
160 |
except Exception as e:
|
161 |
return f"{model_id} failed to load: {str(e)}"
|
162 |
|
|
|
163 |
def run_models(models, parallel):
|
164 |
if parallel:
|
165 |
futures = [executor.submit(load_model, m) for m in models]
|
166 |
return [f.result() for f in futures]
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
with gr.Blocks() as demo:
|
171 |
-
with gr.Row():
|
172 |
-
gr.HTML(
|
173 |
-
f"""
|
174 |
<p id="project-links" align="center">
|
175 |
<a href='https://huggingface.co/spaces/charliebaby2023/Fast_Stable_diffusion_CPU/edit/main/app_demo.py'>Edit this app_demo py file</a>
|
176 |
<p> this is currently running the Lykon/dreamshaper-xl-v2-turbo model</p>
|
177 |
<p><fast stable diffusion, CPU</p>
|
178 |
</p>
|
179 |
-
|
180 |
-
)
|
181 |
with gr.Column(scale=1):
|
182 |
with gr.Row():
|
183 |
hfuser_input = gr.Textbox(label="Hugging Face Username")
|
@@ -185,24 +122,18 @@ with gr.Blocks() as demo:
|
|
185 |
user_model_dict = gr.Textbox(visible=False, label="Dict Input (e.g., {'username': ['model1', 'model2']})")
|
186 |
with gr.Row():
|
187 |
run_btn = gr.Button("Load Models")
|
188 |
-
with gr.Column(scale=3):
|
189 |
with gr.Row():
|
190 |
parallel_toggle = gr.Checkbox(label="Load in Parallel", value=True)
|
191 |
-
with gr.Row():
|
192 |
output = gr.Textbox(label="Output", lines=3)
|
193 |
|
194 |
def update_models(hfuser):
|
195 |
if hfuser:
|
196 |
models = validate_and_list_models(hfuser)
|
197 |
-
label = f"Models found: {len(models)}"
|
198 |
-
|
199 |
-
|
200 |
-
else:
|
201 |
-
return gr.update(choices=models, label=label, visible=False)
|
202 |
-
else:
|
203 |
-
models = ''
|
204 |
-
label = ''
|
205 |
-
return gr.update(choices=models, label=label, visible=False)
|
206 |
|
207 |
def update_from_dict(dict_str):
|
208 |
parsed = parse_user_model_dict(dict_str)
|
@@ -210,28 +141,18 @@ with gr.Blocks() as demo:
|
|
210 |
return gr.update(), gr.update()
|
211 |
hfuser = next(iter(parsed))
|
212 |
models = parsed[hfuser]
|
213 |
-
label = f"Models found: {len(models)}"
|
214 |
-
return gr.update(value=hfuser), gr.update(choices=models, value=models,
|
215 |
-
#return gr.update(value=hfuser), gr.update(choices=parsed[hfuser], value=parsed[hfuser])
|
216 |
|
217 |
hfuser_input.change(update_models, hfuser_input, hfuser_models)
|
218 |
user_model_dict.change(update_from_dict, user_model_dict, [hfuser_input, hfuser_models])
|
219 |
run_btn.click(run_models, [hfuser_models, parallel_toggle], output)
|
220 |
|
221 |
-
|
222 |
-
|
223 |
with gr.Group():
|
224 |
with gr.Row():
|
225 |
-
prompt = gr.Text(
|
226 |
-
placeholder="Enter your prompt", show_label=False, container=False,
|
227 |
-
)
|
228 |
run_button = gr.Button("Run", scale=0)
|
229 |
-
gallery = gr.Gallery(
|
230 |
-
label="Generated images",
|
231 |
-
show_label=False,
|
232 |
-
elem_id="gallery"
|
233 |
-
|
234 |
-
)
|
235 |
|
236 |
with gr.Accordion("Advanced options", open=False):
|
237 |
seed = gr.Slider(0, MAX_SEED, value=0, step=1, randomize=True, label="Seed")
|
@@ -244,34 +165,8 @@ with gr.Blocks() as demo:
|
|
244 |
num_inference_steps = gr.Slider(1, 8, value=4, step=1, label="Inference Steps")
|
245 |
num_images = gr.Slider(1, 8, value=1, step=1, label="Number of Images")
|
246 |
|
247 |
-
|
248 |
-
with gr.Group():
|
249 |
-
with gr.Row():
|
250 |
-
prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, )
|
251 |
-
run_button = gr.Button("Run", scale=0)
|
252 |
-
result = gr.Gallery( label="Generated images", show_label=False, elem_id="gallery", grid=[2] )
|
253 |
-
with gr.Accordion("Advanced options", open=False):
|
254 |
-
seed = gr.Slider(label="Seed",minimum=0,maximum=MAX_SEED,step=1,value=0,randomize=True)
|
255 |
-
randomize_seed = gr.Checkbox(label="Randomize seed across runs", value=True)
|
256 |
-
with gr.Row():
|
257 |
-
width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, )
|
258 |
-
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512,)
|
259 |
-
with gr.Row():
|
260 |
-
guidance_scale = gr.Slider(label="Guidance scale for base", minimum=2, maximum=14, step=0.1, value=8.0,)
|
261 |
-
num_inference_steps = gr.Slider(label="Number of inference steps for base", minimum=1, maximum=8, step=1, value=4,)
|
262 |
-
with gr.Row():
|
263 |
-
num_images = gr.Slider(label="Number of images", minimum=1, maximum=8, step=1, value=1, visible=True,)
|
264 |
-
with gr.Accordion("Past generations", open=False):
|
265 |
-
gr_user_history.render()
|
266 |
-
|
267 |
-
gr.on( triggers=[ prompt.submit, run_button.click, ],
|
268 |
fn=generate,
|
269 |
-
inputs=[prompt,seed,width,height,guidance_scale,num_inference_steps,num_images,randomize_seed
|
270 |
-
outputs=[
|
271 |
-
api_name="run",
|
272 |
)
|
273 |
-
|
274 |
-
if __name__ == "__main__":
|
275 |
-
demo.queue(api_open=False)
|
276 |
-
demo.launch()
|
277 |
-
|
|
|
17 |
from safetensors.torch import load_file
|
18 |
import cv2
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
|
22 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "768"))
|
23 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
24 |
+
DTYPE = torch.float32
|
25 |
api = HfApi()
|
26 |
executor = ThreadPoolExecutor()
|
27 |
model_cache = {}
|
28 |
|
|
|
29 |
model_id = "Lykon/dreamshaper-xl-v2-turbo"
|
30 |
custom_pipe = DiffusionPipeline.from_pretrained(model_id, custom_pipeline="latent_consistency_txt2img", custom_revision="main")
|
|
|
31 |
pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="latent_consistency_txt2img", custom_revision="main")
|
32 |
pipe.to(torch_device="cpu", torch_dtype=DTYPE)
|
33 |
pipe.safety_checker = None
|
|
|
|
|
34 |
pipe = StableDiffusionPipeline.from_pretrained(
|
35 |
+
model_id, safety_checker=None, torch_dtype=DTYPE, use_safetensors=True).to("cpu")
|
36 |
+
|
37 |
|
38 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
39 |
+
return random.randint(0, MAX_SEED) if randomize_seed else seed
|
40 |
+
|
|
|
41 |
|
42 |
def save_image(img, profile: gr.OAuthProfile | None, metadata: dict):
|
43 |
unique_name = str(uuid.uuid4()) + '.png'
|
44 |
img.save(unique_name)
|
45 |
gr_user_history.save_image(label=metadata["prompt"], image=img, profile=profile, metadata=metadata)
|
|
|
46 |
return unique_name
|
47 |
|
48 |
+
|
|
|
|
|
|
|
|
|
|
|
49 |
def save_images(image_array, profile: gr.OAuthProfile | None, metadata: dict):
|
|
|
50 |
with ThreadPoolExecutor() as executor:
|
51 |
+
return list(executor.map(save_image, image_array, [profile]*len(image_array), [metadata]*len(image_array)))
|
|
|
52 |
|
53 |
+
|
54 |
+
def generate(prompt: str, seed: int = 0, width: int = 512, height: int = 512,
|
55 |
+
guidance_scale: float = 8.0, num_inference_steps: int = 4,
|
56 |
+
num_images: int = 1, randomize_seed: bool = False,
|
57 |
+
progress=gr.Progress(track_tqdm=True),
|
58 |
+
profile: gr.OAuthProfile | None = None) -> tuple[list[str], int]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
seed = randomize_seed_fn(seed, randomize_seed)
|
60 |
torch.manual_seed(seed)
|
61 |
start_time = time.time()
|
62 |
+
outputs = pipe(prompt=prompt, negative_prompt="", height=height, width=width,
|
63 |
+
guidance_scale=guidance_scale, num_inference_steps=num_inference_steps,
|
64 |
+
num_images_per_prompt=num_images, output_type="pil", lcm_origin_steps=50).images
|
65 |
+
print(f"Generation took {time.time() - start_time:.2f} seconds")
|
66 |
+
paths = save_images(outputs, profile, metadata={"prompt": prompt, "seed": seed,
|
67 |
+
"width": width, "height": height,
|
68 |
+
"guidance_scale": guidance_scale,
|
69 |
+
"num_inference_steps": num_inference_steps})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
return paths, seed
|
71 |
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
def validate_and_list_models(hfuser):
|
74 |
try:
|
75 |
models = api.list_models(author=hfuser)
|
|
|
77 |
except Exception:
|
78 |
return []
|
79 |
|
80 |
+
|
81 |
def parse_user_model_dict(user_model_dict_str):
|
82 |
try:
|
83 |
data = ast.literal_eval(user_model_dict_str)
|
|
|
87 |
except Exception:
|
88 |
return {}
|
89 |
|
90 |
+
|
91 |
def load_model(model_id):
|
92 |
if model_id in model_cache:
|
93 |
return f"{model_id} loaded from cache"
|
|
|
98 |
except Exception as e:
|
99 |
return f"{model_id} failed to load: {str(e)}"
|
100 |
|
101 |
+
|
102 |
def run_models(models, parallel):
|
103 |
if parallel:
|
104 |
futures = [executor.submit(load_model, m) for m in models]
|
105 |
return [f.result() for f in futures]
|
106 |
+
return [load_model(m) for m in models]
|
107 |
+
|
108 |
+
|
109 |
with gr.Blocks() as demo:
|
110 |
+
with gr.Row():
|
111 |
+
gr.HTML("""
|
|
|
112 |
<p id="project-links" align="center">
|
113 |
<a href='https://huggingface.co/spaces/charliebaby2023/Fast_Stable_diffusion_CPU/edit/main/app_demo.py'>Edit this app_demo py file</a>
|
114 |
<p> this is currently running the Lykon/dreamshaper-xl-v2-turbo model</p>
|
115 |
<p><fast stable diffusion, CPU</p>
|
116 |
</p>
|
117 |
+
""")
|
|
|
118 |
with gr.Column(scale=1):
|
119 |
with gr.Row():
|
120 |
hfuser_input = gr.Textbox(label="Hugging Face Username")
|
|
|
122 |
user_model_dict = gr.Textbox(visible=False, label="Dict Input (e.g., {'username': ['model1', 'model2']})")
|
123 |
with gr.Row():
|
124 |
run_btn = gr.Button("Load Models")
|
125 |
+
with gr.Column(scale=3):
|
126 |
with gr.Row():
|
127 |
parallel_toggle = gr.Checkbox(label="Load in Parallel", value=True)
|
128 |
+
with gr.Row():
|
129 |
output = gr.Textbox(label="Output", lines=3)
|
130 |
|
131 |
def update_models(hfuser):
|
132 |
if hfuser:
|
133 |
models = validate_and_list_models(hfuser)
|
134 |
+
label = f"Models found: {len(models)}"
|
135 |
+
return gr.update(choices=models, label=label, visible=bool(models))
|
136 |
+
return gr.update(choices=[], label='', visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
def update_from_dict(dict_str):
|
139 |
parsed = parse_user_model_dict(dict_str)
|
|
|
141 |
return gr.update(), gr.update()
|
142 |
hfuser = next(iter(parsed))
|
143 |
models = parsed[hfuser]
|
144 |
+
label = f"Models found: {len(models)}"
|
145 |
+
return gr.update(value=hfuser), gr.update(choices=models, value=models, label=label)
|
|
|
146 |
|
147 |
hfuser_input.change(update_models, hfuser_input, hfuser_models)
|
148 |
user_model_dict.change(update_from_dict, user_model_dict, [hfuser_input, hfuser_models])
|
149 |
run_btn.click(run_models, [hfuser_models, parallel_toggle], output)
|
150 |
|
|
|
|
|
151 |
with gr.Group():
|
152 |
with gr.Row():
|
153 |
+
prompt = gr.Text(placeholder="Enter your prompt", show_label=False, container=False)
|
|
|
|
|
154 |
run_button = gr.Button("Run", scale=0)
|
155 |
+
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery")
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
with gr.Accordion("Advanced options", open=False):
|
158 |
seed = gr.Slider(0, MAX_SEED, value=0, step=1, randomize=True, label="Seed")
|
|
|
165 |
num_inference_steps = gr.Slider(1, 8, value=4, step=1, label="Inference Steps")
|
166 |
num_images = gr.Slider(1, 8, value=1, step=1, label="Number of Images")
|
167 |
|
168 |
+
run_button.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
fn=generate,
|
170 |
+
inputs=[prompt, seed, width, height, guidance_scale, num_inference_steps, num_images, randomize_seed],
|
171 |
+
outputs=[gallery, seed]
|
|
|
172 |
)
|
|
|
|
|
|
|
|
|
|