Update app_demo.py
Browse files- app_demo.py +56 -148
app_demo.py
CHANGED
@@ -7,16 +7,13 @@ import gradio as gr
|
|
7 |
import numpy as np
|
8 |
import PIL.Image
|
9 |
import torch
|
10 |
-
#from diffusers import DiffusionPipeline
|
11 |
from diffusers import StableDiffusionPipeline
|
12 |
-
from tqdm import tqdm
|
13 |
-
from safetensors.torch import load_file
|
14 |
from concurrent.futures import ThreadPoolExecutor
|
15 |
import uuid
|
16 |
-
|
17 |
-
model_id = "Lykon/dreamshaper-xl-v2-turbo"
|
18 |
DESCRIPTION = '''# Fast Stable Diffusion CPU with Latent Consistency Model
|
19 |
-
Distilled from [Dreamshaper v7](https://huggingface.co/Lykon/dreamshaper-7) fine
|
20 |
'''
|
21 |
if not torch.cuda.is_available():
|
22 |
DESCRIPTION += "\n<p>running on CPU.</p>"
|
@@ -24,44 +21,15 @@ if not torch.cuda.is_available():
|
|
24 |
MAX_SEED = np.iinfo(np.int32).max
|
25 |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
|
26 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "768"))
|
27 |
-
|
28 |
-
DTYPE = torch.float32 # torch.float16 works as well, but pictures seem to be a bit worse
|
29 |
-
|
30 |
-
#pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="latent_consistency_txt2img", custom_revision="main")
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
low_cpu_mem_usage=True,
|
38 |
-
safety_checker=None, # Disable NSFW filter
|
39 |
-
requires_safety_checker=False, # Skip warning
|
40 |
use_safetensors=True
|
41 |
-
)
|
42 |
-
#pipe.to(torch_device="cpu",torch_dtype="float16", torch_dtype=DTYPE)
|
43 |
-
pipe.to(torch_dtype="float32" )
|
44 |
-
pipe.to("cpu")
|
45 |
-
'''
|
46 |
-
|
47 |
-
#from diffusers import StableDiffusionPipeline
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
pipe = StableDiffusionPipeline.from_pretrained(model_id, safety_checker= None)
|
52 |
-
prompt = "A futuristic cityscape at sunset"
|
53 |
-
output = pipe(
|
54 |
-
prompt=prompt,
|
55 |
-
negative_prompt="", # ← prevents added_cond_kwargs from being None
|
56 |
-
#num_inference_steps=50, # adjust as you like
|
57 |
-
#guidance_scale=7.5 # ditto
|
58 |
-
requires_safety_checker=False
|
59 |
-
|
60 |
-
)
|
61 |
-
image = output.images[0]
|
62 |
-
#image = pipe(prompt).images[0]
|
63 |
-
image.show()
|
64 |
-
|
65 |
|
66 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
67 |
if randomize_seed:
|
@@ -71,14 +39,14 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
71 |
def save_image(img, profile: gr.OAuthProfile | None, metadata: dict):
|
72 |
unique_name = str(uuid.uuid4()) + '.png'
|
73 |
img.save(unique_name)
|
74 |
-
#gr_user_history.save_image(label=metadata["prompt"], image=img, profile=profile, metadata=metadata)
|
75 |
return unique_name
|
76 |
|
77 |
def save_images(image_array, profile: gr.OAuthProfile | None, metadata: dict):
|
78 |
-
paths = []
|
79 |
with ThreadPoolExecutor() as executor:
|
80 |
-
|
81 |
-
|
|
|
|
|
82 |
|
83 |
def generate(
|
84 |
prompt: str,
|
@@ -91,143 +59,83 @@ def generate(
|
|
91 |
randomize_seed: bool = False,
|
92 |
progress = gr.Progress(track_tqdm=True),
|
93 |
profile: gr.OAuthProfile | None = None,
|
94 |
-
) ->
|
|
|
95 |
seed = randomize_seed_fn(seed, randomize_seed)
|
96 |
torch.manual_seed(seed)
|
|
|
97 |
start_time = time.time()
|
98 |
-
|
|
|
99 |
prompt=prompt,
|
100 |
-
|
101 |
height=height,
|
|
|
102 |
guidance_scale=guidance_scale,
|
103 |
-
negative_prompt="",
|
104 |
-
safety_checker= None,
|
105 |
-
requires_safety_checker=False,
|
106 |
num_inference_steps=num_inference_steps,
|
107 |
num_images_per_prompt=num_images,
|
108 |
-
lcm_origin_steps=50,
|
109 |
output_type="pil",
|
110 |
).images
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
return paths, seed
|
114 |
|
115 |
examples = [
|
116 |
-
"
|
117 |
-
"
|
118 |
-
"
|
119 |
-
"A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece",
|
120 |
]
|
121 |
|
122 |
with gr.Blocks(css="style.css") as demo:
|
123 |
gr.Markdown(DESCRIPTION)
|
124 |
-
gr.DuplicateButton(
|
125 |
-
value="Duplicate Space for private use",
|
126 |
-
elem_id="duplicate-button",
|
127 |
-
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
|
128 |
-
)
|
129 |
-
gr.HTML(
|
130 |
-
f"""
|
131 |
-
<p id="project-links" align="center">
|
132 |
-
<a href='https://huggingface.co/spaces/charliebaby2023/Fast_Stable_diffusion_CPU/edit/main/app_demo.py'>Edit this py file</a>
|
133 |
-
</p>
|
134 |
-
"""
|
135 |
-
)
|
136 |
with gr.Group():
|
137 |
with gr.Row():
|
138 |
prompt = gr.Text(
|
139 |
-
label="Prompt",
|
140 |
-
show_label=False,
|
141 |
-
max_lines=1,
|
142 |
placeholder="Enter your prompt",
|
|
|
143 |
container=False,
|
144 |
)
|
145 |
run_button = gr.Button("Run", scale=0)
|
146 |
-
|
147 |
-
label="Generated images",
|
|
|
|
|
|
|
148 |
)
|
|
|
149 |
with gr.Accordion("Advanced options", open=False):
|
150 |
-
seed = gr.Slider(
|
151 |
-
label="Seed",
|
152 |
-
minimum=0,
|
153 |
-
maximum=MAX_SEED,
|
154 |
-
step=1,
|
155 |
-
value=0,
|
156 |
-
randomize=True
|
157 |
-
)
|
158 |
randomize_seed = gr.Checkbox(label="Randomize seed across runs", value=True)
|
159 |
with gr.Row():
|
160 |
-
width = gr.Slider(
|
161 |
-
|
162 |
-
minimum=256,
|
163 |
-
maximum=MAX_IMAGE_SIZE,
|
164 |
-
step=32,
|
165 |
-
value=512,
|
166 |
-
)
|
167 |
-
height = gr.Slider(
|
168 |
-
label="Height",
|
169 |
-
minimum=256,
|
170 |
-
maximum=MAX_IMAGE_SIZE,
|
171 |
-
step=32,
|
172 |
-
value=512,
|
173 |
-
)
|
174 |
with gr.Row():
|
175 |
-
guidance_scale = gr.Slider(
|
176 |
-
|
177 |
-
|
178 |
-
maximum=14,
|
179 |
-
step=0.1,
|
180 |
-
value=8.0,
|
181 |
-
)
|
182 |
-
num_inference_steps = gr.Slider(
|
183 |
-
label="Number of inference steps for base",
|
184 |
-
minimum=1,
|
185 |
-
maximum=8,
|
186 |
-
step=1,
|
187 |
-
value=4,
|
188 |
-
)
|
189 |
-
with gr.Row():
|
190 |
-
num_images = gr.Slider(
|
191 |
-
label="Number of images",
|
192 |
-
minimum=1,
|
193 |
-
maximum=8,
|
194 |
-
step=1,
|
195 |
-
value=1,
|
196 |
-
visible=True,
|
197 |
-
)
|
198 |
|
199 |
-
with gr.Accordion("Past generations", open=False):
|
200 |
-
tr = gr.Textbox(value="ol")
|
201 |
-
|
202 |
gr.Examples(
|
203 |
examples=examples,
|
204 |
inputs=prompt,
|
205 |
-
outputs=
|
206 |
fn=generate,
|
207 |
cache_examples=CACHE_EXAMPLES,
|
208 |
)
|
209 |
|
210 |
-
|
211 |
-
triggers=[
|
212 |
-
prompt.submit,
|
213 |
-
run_button.click,
|
214 |
-
],
|
215 |
-
fn=generate,
|
216 |
-
inputs=[
|
217 |
-
prompt,
|
218 |
-
seed,
|
219 |
-
width,
|
220 |
-
height,
|
221 |
-
guidance_scale,
|
222 |
-
num_inference_steps,
|
223 |
-
num_images,
|
224 |
-
randomize_seed
|
225 |
-
],
|
226 |
-
outputs=[result, seed],
|
227 |
-
api_name="run",
|
228 |
-
)
|
229 |
-
|
230 |
-
if __name__ == "__main__":
|
231 |
-
demo.queue(api_open=False)
|
232 |
-
# demo.queue(max_size=20).launch()
|
233 |
demo.launch()
|
|
|
7 |
import numpy as np
|
8 |
import PIL.Image
|
9 |
import torch
|
|
|
10 |
from diffusers import StableDiffusionPipeline
|
|
|
|
|
11 |
from concurrent.futures import ThreadPoolExecutor
|
12 |
import uuid
|
13 |
+
|
14 |
+
model_id = "Lykon/dreamshaper-xl-v2-turbo"
|
15 |
DESCRIPTION = '''# Fast Stable Diffusion CPU with Latent Consistency Model
|
16 |
+
Distilled from [Dreamshaper v7](https://huggingface.co/Lykon/dreamshaper-7) fine‑tune of SD v1-5.
|
17 |
'''
|
18 |
if not torch.cuda.is_available():
|
19 |
DESCRIPTION += "\n<p>running on CPU.</p>"
|
|
|
21 |
MAX_SEED = np.iinfo(np.int32).max
|
22 |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
|
23 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "768"))
|
24 |
+
DTYPE = torch.float32
|
|
|
|
|
|
|
25 |
|
26 |
+
# Load pipeline once, disabling NSFW filter at construction time
|
27 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
28 |
+
model_id,
|
29 |
+
safety_checker=None,
|
30 |
+
torch_dtype=DTYPE,
|
|
|
|
|
|
|
31 |
use_safetensors=True
|
32 |
+
).to("cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
35 |
if randomize_seed:
|
|
|
39 |
def save_image(img, profile: gr.OAuthProfile | None, metadata: dict):
|
40 |
unique_name = str(uuid.uuid4()) + '.png'
|
41 |
img.save(unique_name)
|
|
|
42 |
return unique_name
|
43 |
|
44 |
def save_images(image_array, profile: gr.OAuthProfile | None, metadata: dict):
|
|
|
45 |
with ThreadPoolExecutor() as executor:
|
46 |
+
return list(executor.map(
|
47 |
+
lambda args: save_image(*args),
|
48 |
+
zip(image_array, [profile]*len(image_array), [metadata]*len(image_array))
|
49 |
+
))
|
50 |
|
51 |
def generate(
|
52 |
prompt: str,
|
|
|
59 |
randomize_seed: bool = False,
|
60 |
progress = gr.Progress(track_tqdm=True),
|
61 |
profile: gr.OAuthProfile | None = None,
|
62 |
+
) -> tuple[list[str], int]:
|
63 |
+
# prepare seed
|
64 |
seed = randomize_seed_fn(seed, randomize_seed)
|
65 |
torch.manual_seed(seed)
|
66 |
+
|
67 |
start_time = time.time()
|
68 |
+
# **Call the pipeline with only supported kwargs:**
|
69 |
+
outputs = pipe(
|
70 |
prompt=prompt,
|
71 |
+
negative_prompt="", # required to avoid NoneType in UNet
|
72 |
height=height,
|
73 |
+
width=width,
|
74 |
guidance_scale=guidance_scale,
|
|
|
|
|
|
|
75 |
num_inference_steps=num_inference_steps,
|
76 |
num_images_per_prompt=num_images,
|
|
|
77 |
output_type="pil",
|
78 |
).images
|
79 |
+
|
80 |
+
latency = time.time() - start_time
|
81 |
+
print(f"Generation took {latency:.2f} seconds")
|
82 |
+
|
83 |
+
paths = save_images(
|
84 |
+
outputs,
|
85 |
+
profile,
|
86 |
+
metadata={
|
87 |
+
"prompt": prompt,
|
88 |
+
"seed": seed,
|
89 |
+
"width": width,
|
90 |
+
"height": height,
|
91 |
+
"guidance_scale": guidance_scale,
|
92 |
+
"num_inference_steps": num_inference_steps,
|
93 |
+
}
|
94 |
+
)
|
95 |
+
|
96 |
return paths, seed
|
97 |
|
98 |
examples = [
|
99 |
+
"A futuristic cityscape at sunset",
|
100 |
+
"Steampunk airship over mountains",
|
101 |
+
"Portrait of a cyborg queen, hyper‑detailed",
|
|
|
102 |
]
|
103 |
|
104 |
with gr.Blocks(css="style.css") as demo:
|
105 |
gr.Markdown(DESCRIPTION)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
with gr.Group():
|
107 |
with gr.Row():
|
108 |
prompt = gr.Text(
|
|
|
|
|
|
|
109 |
placeholder="Enter your prompt",
|
110 |
+
show_label=False,
|
111 |
container=False,
|
112 |
)
|
113 |
run_button = gr.Button("Run", scale=0)
|
114 |
+
gallery = gr.Gallery(
|
115 |
+
label="Generated images",
|
116 |
+
show_label=False,
|
117 |
+
elem_id="gallery",
|
118 |
+
grid=[2]
|
119 |
)
|
120 |
+
|
121 |
with gr.Accordion("Advanced options", open=False):
|
122 |
+
seed = gr.Slider(0, MAX_SEED, value=0, step=1, randomize=True, label="Seed")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
randomize_seed = gr.Checkbox(label="Randomize seed across runs", value=True)
|
124 |
with gr.Row():
|
125 |
+
width = gr.Slider(256, MAX_IMAGE_SIZE, value=512, step=32, label="Width")
|
126 |
+
height = gr.Slider(256, MAX_IMAGE_SIZE, value=512, step=32, label="Height")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
with gr.Row():
|
128 |
+
guidance_scale = gr.Slider(2.0, 14.0, value=8.0, step=0.1, label="Guidance Scale")
|
129 |
+
num_inference_steps = gr.Slider(1, 8, value=4, step=1, label="Inference Steps")
|
130 |
+
num_images = gr.Slider(1, 8, value=1, step=1, label="Number of Images")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
|
|
|
|
|
|
132 |
gr.Examples(
|
133 |
examples=examples,
|
134 |
inputs=prompt,
|
135 |
+
outputs=gallery,
|
136 |
fn=generate,
|
137 |
cache_examples=CACHE_EXAMPLES,
|
138 |
)
|
139 |
|
140 |
+
demo.queue()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
demo.launch()
|