Update scripts/main.py
Browse files- scripts/main.py +2 -384
scripts/main.py
CHANGED
|
@@ -17,8 +17,7 @@ import gradio as gr
|
|
| 17 |
from PIL import Image, PngImagePlugin
|
| 18 |
import torch
|
| 19 |
|
| 20 |
-
scheduler = LCMScheduler.from_pretrained(
|
| 21 |
-
"charliebaby2023/cybrpny", subfolder="scheduler")
|
| 22 |
|
| 23 |
pipe = LatentConsistencyModelPipeline.from_pretrained(
|
| 24 |
"charliebaby2023/cybrpny", scheduler = scheduler, safety_checker = None)
|
|
@@ -129,223 +128,8 @@ def generate(
|
|
| 129 |
return paths, seed
|
| 130 |
|
| 131 |
|
| 132 |
-
def generate_i2i(
|
| 133 |
-
prompt: str,
|
| 134 |
-
image: PipelineImageInput = None,
|
| 135 |
-
strength: float = 0.8,
|
| 136 |
-
seed: int = 0,
|
| 137 |
-
guidance_scale: float = 8.0,
|
| 138 |
-
num_inference_steps: int = 4,
|
| 139 |
-
num_images: int = 4,
|
| 140 |
-
randomize_seed: bool = False,
|
| 141 |
-
use_fp16: bool = True,
|
| 142 |
-
use_torch_compile: bool = False,
|
| 143 |
-
use_cpu: bool = False,
|
| 144 |
-
progress=gr.Progress(track_tqdm=True),
|
| 145 |
-
width: Optional[int] = 512,
|
| 146 |
-
height: Optional[int] = 512,
|
| 147 |
-
) -> Image.Image:
|
| 148 |
-
seed = randomize_seed_fn(seed, randomize_seed)
|
| 149 |
-
torch.manual_seed(seed)
|
| 150 |
-
|
| 151 |
-
selected_device = 'cuda'
|
| 152 |
-
if use_cpu:
|
| 153 |
-
selected_device = "cpu"
|
| 154 |
-
if use_fp16:
|
| 155 |
-
use_fp16 = False
|
| 156 |
-
print("LCM warning: running on CPU, overrode FP16 with FP32")
|
| 157 |
-
global pipe, scheduler
|
| 158 |
-
pipe = LatentConsistencyModelImg2ImgPipeline(
|
| 159 |
-
vae= pipe.vae,
|
| 160 |
-
text_encoder = pipe.text_encoder,
|
| 161 |
-
tokenizer = pipe.tokenizer,
|
| 162 |
-
unet = pipe.unet,
|
| 163 |
-
scheduler = None, #scheduler,
|
| 164 |
-
safety_checker=None, # Disable NSFW filter
|
| 165 |
-
feature_extractor = pipe.feature_extractor,
|
| 166 |
-
requires_safety_checker = False,
|
| 167 |
-
)
|
| 168 |
-
# pipe = LatentConsistencyModelImg2ImgPipeline.from_pretrained(
|
| 169 |
-
# "SimianLuo/LCM_Dreamshaper_v7", safety_checker = None)
|
| 170 |
-
|
| 171 |
-
if use_fp16:
|
| 172 |
-
pipe.to(torch_device=selected_device, torch_dtype=torch.float16)
|
| 173 |
-
else:
|
| 174 |
-
pipe.to(torch_device=selected_device, torch_dtype=torch.float32)
|
| 175 |
-
|
| 176 |
-
# Windows does not support torch.compile for now
|
| 177 |
-
if os.name != 'nt' and use_torch_compile:
|
| 178 |
-
pipe.unet = torch.compile(pipe.unet, mode='max-autotune')
|
| 179 |
-
|
| 180 |
-
width, height = image.size
|
| 181 |
-
|
| 182 |
-
start_time = time.time()
|
| 183 |
-
result = pipe(
|
| 184 |
-
prompt=prompt,
|
| 185 |
-
image=image,
|
| 186 |
-
strength=strength,
|
| 187 |
-
width=width,
|
| 188 |
-
height=height,
|
| 189 |
-
guidance_scale=guidance_scale,
|
| 190 |
-
num_inference_steps=num_inference_steps,
|
| 191 |
-
num_images_per_prompt=num_images,
|
| 192 |
-
original_inference_steps=50,
|
| 193 |
-
output_type="pil",
|
| 194 |
-
device = selected_device
|
| 195 |
-
).images
|
| 196 |
-
paths = save_images(result, metadata={"prompt": prompt, "seed": seed, "width": width,
|
| 197 |
-
"height": height, "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps})
|
| 198 |
-
|
| 199 |
-
elapsed_time = time.time() - start_time
|
| 200 |
-
print("LCM inference time: ", elapsed_time, "seconds")
|
| 201 |
-
return paths, seed
|
| 202 |
-
|
| 203 |
-
import cv2
|
| 204 |
-
|
| 205 |
-
def video_to_frames(video_path):
|
| 206 |
-
# Open the video file
|
| 207 |
-
cap = cv2.VideoCapture(video_path)
|
| 208 |
-
|
| 209 |
-
# Check if the video opened successfully
|
| 210 |
-
if not cap.isOpened():
|
| 211 |
-
print("Error: LCM Could not open video.")
|
| 212 |
-
return
|
| 213 |
-
|
| 214 |
-
# Read frames from the video
|
| 215 |
-
pil_images = []
|
| 216 |
-
while True:
|
| 217 |
-
ret, frame = cap.read()
|
| 218 |
-
if not ret:
|
| 219 |
-
break
|
| 220 |
-
|
| 221 |
-
# Convert BGR to RGB (OpenCV uses BGR by default)
|
| 222 |
-
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 223 |
-
|
| 224 |
-
# Convert numpy array to PIL Image
|
| 225 |
-
pil_image = Image.fromarray(rgb_frame)
|
| 226 |
-
|
| 227 |
-
# Append the PIL Image to the list
|
| 228 |
-
pil_images.append(pil_image)
|
| 229 |
-
|
| 230 |
-
# Release the video capture object
|
| 231 |
-
cap.release()
|
| 232 |
-
|
| 233 |
-
return pil_images
|
| 234 |
-
|
| 235 |
-
def frames_to_video(pil_images, output_path, fps):
|
| 236 |
-
if not pil_images:
|
| 237 |
-
print("Error: No images to convert.")
|
| 238 |
-
return
|
| 239 |
-
|
| 240 |
-
img_array = []
|
| 241 |
-
for pil_image in pil_images:
|
| 242 |
-
img_array.append(np.array(pil_image))
|
| 243 |
-
|
| 244 |
-
height, width, layers = img_array[0].shape
|
| 245 |
-
size = (width, height)
|
| 246 |
-
|
| 247 |
-
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, size)
|
| 248 |
-
for i in range(len(img_array)):
|
| 249 |
-
out.write(cv2.cvtColor(img_array[i], cv2.COLOR_RGB2BGR))
|
| 250 |
-
out.release()
|
| 251 |
-
|
| 252 |
-
def generate_v2v(
|
| 253 |
-
prompt: str,
|
| 254 |
-
video: any = None,
|
| 255 |
-
strength: float = 0.8,
|
| 256 |
-
seed: int = 0,
|
| 257 |
-
guidance_scale: float = 8.0,
|
| 258 |
-
num_inference_steps: int = 4,
|
| 259 |
-
randomize_seed: bool = False,
|
| 260 |
-
use_fp16: bool = True,
|
| 261 |
-
use_torch_compile: bool = False,
|
| 262 |
-
use_cpu: bool = False,
|
| 263 |
-
fps: int = 10,
|
| 264 |
-
save_frames: bool = False,
|
| 265 |
-
# progress=gr.Progress(track_tqdm=True),
|
| 266 |
-
width: Optional[int] = 512,
|
| 267 |
-
height: Optional[int] = 512,
|
| 268 |
-
num_images: Optional[int] = 1,
|
| 269 |
-
) -> Image.Image:
|
| 270 |
-
seed = randomize_seed_fn(seed, randomize_seed)
|
| 271 |
-
torch.manual_seed(seed)
|
| 272 |
-
|
| 273 |
-
selected_device = 'cuda'
|
| 274 |
-
if use_cpu:
|
| 275 |
-
selected_device = "cpu"
|
| 276 |
-
if use_fp16:
|
| 277 |
-
use_fp16 = False
|
| 278 |
-
print("LCM warning: running on CPU, overrode FP16 with FP32")
|
| 279 |
-
global pipe, scheduler
|
| 280 |
-
pipe = LatentConsistencyModelImg2ImgPipeline(
|
| 281 |
-
vae= pipe.vae,
|
| 282 |
-
text_encoder = pipe.text_encoder,
|
| 283 |
-
tokenizer = pipe.tokenizer,
|
| 284 |
-
unet = pipe.unet,
|
| 285 |
-
scheduler = None,
|
| 286 |
-
safety_checker=None, # Disable NSFW filter
|
| 287 |
-
feature_extractor = pipe.feature_extractor,
|
| 288 |
-
requires_safety_checker = False,
|
| 289 |
-
)
|
| 290 |
-
# pipe = LatentConsistencyModelImg2ImgPipeline.from_pretrained(
|
| 291 |
-
# "SimianLuo/LCM_Dreamshaper_v7", safety_checker = None)
|
| 292 |
|
| 293 |
-
|
| 294 |
-
pipe.to(torch_device=selected_device, torch_dtype=torch.float16)
|
| 295 |
-
else:
|
| 296 |
-
pipe.to(torch_device=selected_device, torch_dtype=torch.float32)
|
| 297 |
-
|
| 298 |
-
# Windows does not support torch.compile for now
|
| 299 |
-
if os.name != 'nt' and use_torch_compile:
|
| 300 |
-
pipe.unet = torch.compile(pipe.unet, mode='max-autotune')
|
| 301 |
-
|
| 302 |
-
frames = video_to_frames(video)
|
| 303 |
-
if frames is None:
|
| 304 |
-
print("Error: LCM could not convert video.")
|
| 305 |
-
return
|
| 306 |
-
width, height = frames[0].size
|
| 307 |
-
|
| 308 |
-
start_time = time.time()
|
| 309 |
-
|
| 310 |
-
results = []
|
| 311 |
-
for frame in frames:
|
| 312 |
-
result = pipe(
|
| 313 |
-
prompt=prompt,
|
| 314 |
-
image=frame,
|
| 315 |
-
strength=strength,
|
| 316 |
-
width=width,
|
| 317 |
-
height=height,
|
| 318 |
-
guidance_scale=guidance_scale,
|
| 319 |
-
num_inference_steps=num_inference_steps,
|
| 320 |
-
num_images_per_prompt=1,
|
| 321 |
-
original_inference_steps=50,
|
| 322 |
-
output_type="pil",
|
| 323 |
-
device = selected_device
|
| 324 |
-
).images
|
| 325 |
-
if save_frames:
|
| 326 |
-
paths = save_images(result, metadata={"prompt": prompt, "seed": seed, "width": width,
|
| 327 |
-
"height": height, "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps})
|
| 328 |
-
results.extend(result)
|
| 329 |
-
|
| 330 |
-
elapsed_time = time.time() - start_time
|
| 331 |
-
print("LCM vid2vid inference complete! Processing", len(frames), "frames took", elapsed_time, "seconds")
|
| 332 |
-
|
| 333 |
-
save_dir = './outputs/LCM-vid2vid/'
|
| 334 |
-
Path(save_dir).mkdir(exist_ok=True, parents=True)
|
| 335 |
-
unique_id = uuid.uuid4()
|
| 336 |
-
_, input_ext = os.path.splitext(video)
|
| 337 |
-
output_path = save_dir + f"{unique_id}-{seed}" + f"{input_ext}"
|
| 338 |
-
frames_to_video(results, output_path, fps)
|
| 339 |
-
return output_path
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
examples = [
|
| 344 |
-
"portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography",
|
| 345 |
-
"Self-portrait oil painting, a beautiful cyborg with golden hair, 8k",
|
| 346 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
| 347 |
-
"A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece",
|
| 348 |
-
]
|
| 349 |
|
| 350 |
with gr.Blocks() as lcm:
|
| 351 |
with gr.Tab("LCM txt2img"):
|
|
@@ -443,173 +227,7 @@ with gr.Blocks() as lcm:
|
|
| 443 |
outputs=[result, seed],
|
| 444 |
)
|
| 445 |
|
| 446 |
-
with gr.Tab("LCM img2img"):
|
| 447 |
-
with gr.Row():
|
| 448 |
-
prompt = gr.Textbox(label="Prompt",
|
| 449 |
-
show_label=False,
|
| 450 |
-
lines=3,
|
| 451 |
-
placeholder="Prompt",
|
| 452 |
-
elem_classes=["prompt"])
|
| 453 |
-
run_i2i_button = gr.Button("Run", scale=0)
|
| 454 |
-
with gr.Row():
|
| 455 |
-
image_input = gr.Image(label="Upload your Image", type="pil")
|
| 456 |
-
result = gr.Gallery(
|
| 457 |
-
label="Generated images",
|
| 458 |
-
show_label=False,
|
| 459 |
-
elem_id="gallery",
|
| 460 |
-
preview=True
|
| 461 |
-
)
|
| 462 |
-
|
| 463 |
-
with gr.Accordion("Advanced options", open=False):
|
| 464 |
-
seed = gr.Slider(
|
| 465 |
-
label="Seed",
|
| 466 |
-
minimum=0,
|
| 467 |
-
maximum=MAX_SEED,
|
| 468 |
-
step=1,
|
| 469 |
-
value=0,
|
| 470 |
-
randomize=True
|
| 471 |
-
)
|
| 472 |
-
randomize_seed = gr.Checkbox(
|
| 473 |
-
label="Randomize seed across runs", value=True)
|
| 474 |
-
use_fp16 = gr.Checkbox(
|
| 475 |
-
label="Run LCM in fp16 (for lower VRAM)", value=False)
|
| 476 |
-
use_torch_compile = gr.Checkbox(
|
| 477 |
-
label="Run LCM with torch.compile (currently not supported on Windows)", value=False)
|
| 478 |
-
use_cpu = gr.Checkbox(label="Run LCM on CPU", value=True)
|
| 479 |
-
with gr.Row():
|
| 480 |
-
guidance_scale = gr.Slider(
|
| 481 |
-
label="Guidance scale for base",
|
| 482 |
-
minimum=2,
|
| 483 |
-
maximum=14,
|
| 484 |
-
step=0.1,
|
| 485 |
-
value=8.0,
|
| 486 |
-
)
|
| 487 |
-
num_inference_steps = gr.Slider(
|
| 488 |
-
label="Number of inference steps for base",
|
| 489 |
-
minimum=1,
|
| 490 |
-
maximum=8,
|
| 491 |
-
step=1,
|
| 492 |
-
value=4,
|
| 493 |
-
)
|
| 494 |
-
with gr.Row():
|
| 495 |
-
num_images = gr.Slider(
|
| 496 |
-
label="Number of images (batch count)",
|
| 497 |
-
minimum=1,
|
| 498 |
-
maximum=int(os.getenv("MAX_NUM_IMAGES")),
|
| 499 |
-
step=1,
|
| 500 |
-
value=1,
|
| 501 |
-
)
|
| 502 |
-
strength = gr.Slider(
|
| 503 |
-
label="Prompt Strength",
|
| 504 |
-
minimum=0.1,
|
| 505 |
-
maximum=1.0,
|
| 506 |
-
step=0.1,
|
| 507 |
-
value=0.5,
|
| 508 |
-
)
|
| 509 |
-
|
| 510 |
-
run_i2i_button.click(
|
| 511 |
-
fn=generate_i2i,
|
| 512 |
-
inputs=[
|
| 513 |
-
prompt,
|
| 514 |
-
image_input,
|
| 515 |
-
strength,
|
| 516 |
-
seed,
|
| 517 |
-
guidance_scale,
|
| 518 |
-
num_inference_steps,
|
| 519 |
-
num_images,
|
| 520 |
-
randomize_seed,
|
| 521 |
-
use_fp16,
|
| 522 |
-
use_torch_compile,
|
| 523 |
-
use_cpu
|
| 524 |
-
],
|
| 525 |
-
outputs=[result, seed],
|
| 526 |
-
)
|
| 527 |
|
| 528 |
-
|
| 529 |
-
with gr.Tab("LCM vid2vid"):
|
| 530 |
-
|
| 531 |
-
show_v2v = False if os.getenv("SHOW_VID2VID") == "NO" else True
|
| 532 |
-
gr.Markdown("Not recommended for use with CPU. Duplicate the space and modify SHOW_VID2VID to enable it. 🚫💻")
|
| 533 |
-
with gr.Tabs(visible=show_v2v) as tabs:
|
| 534 |
-
#with gr.Tab("", visible=show_v2v):
|
| 535 |
-
|
| 536 |
-
with gr.Row():
|
| 537 |
-
prompt = gr.Textbox(label="Prompt",
|
| 538 |
-
show_label=False,
|
| 539 |
-
lines=3,
|
| 540 |
-
placeholder="Prompt",
|
| 541 |
-
elem_classes=["prompt"])
|
| 542 |
-
run_v2v_button = gr.Button("Run", scale=0)
|
| 543 |
-
with gr.Row():
|
| 544 |
-
video_input = gr.Video(label="Source Video")
|
| 545 |
-
video_output = gr.Video(label="Generated Video")
|
| 546 |
-
|
| 547 |
-
with gr.Accordion("Advanced options", open=False):
|
| 548 |
-
seed = gr.Slider(
|
| 549 |
-
label="Seed",
|
| 550 |
-
minimum=0,
|
| 551 |
-
maximum=MAX_SEED,
|
| 552 |
-
step=1,
|
| 553 |
-
value=0,
|
| 554 |
-
randomize=True
|
| 555 |
-
)
|
| 556 |
-
randomize_seed = gr.Checkbox(
|
| 557 |
-
label="Randomize seed across runs", value=True)
|
| 558 |
-
use_fp16 = gr.Checkbox(
|
| 559 |
-
label="Run LCM in fp16 (for lower VRAM)", value=False)
|
| 560 |
-
use_torch_compile = gr.Checkbox(
|
| 561 |
-
label="Run LCM with torch.compile (currently not supported on Windows)", value=False)
|
| 562 |
-
use_cpu = gr.Checkbox(label="Run LCM on CPU", value=True)
|
| 563 |
-
save_frames = gr.Checkbox(label="Save intermediate frames", value=False)
|
| 564 |
-
with gr.Row():
|
| 565 |
-
guidance_scale = gr.Slider(
|
| 566 |
-
label="Guidance scale for base",
|
| 567 |
-
minimum=2,
|
| 568 |
-
maximum=14,
|
| 569 |
-
step=0.1,
|
| 570 |
-
value=8.0,
|
| 571 |
-
)
|
| 572 |
-
num_inference_steps = gr.Slider(
|
| 573 |
-
label="Number of inference steps for base",
|
| 574 |
-
minimum=1,
|
| 575 |
-
maximum=8,
|
| 576 |
-
step=1,
|
| 577 |
-
value=4,
|
| 578 |
-
)
|
| 579 |
-
with gr.Row():
|
| 580 |
-
fps = gr.Slider(
|
| 581 |
-
label="Output FPS",
|
| 582 |
-
minimum=1,
|
| 583 |
-
maximum=200,
|
| 584 |
-
step=1,
|
| 585 |
-
value=10,
|
| 586 |
-
)
|
| 587 |
-
strength = gr.Slider(
|
| 588 |
-
label="Prompt Strength",
|
| 589 |
-
minimum=0.1,
|
| 590 |
-
maximum=1.0,
|
| 591 |
-
step=0.05,
|
| 592 |
-
value=0.5,
|
| 593 |
-
)
|
| 594 |
-
|
| 595 |
-
run_v2v_button.click(
|
| 596 |
-
fn=generate_v2v,
|
| 597 |
-
inputs=[
|
| 598 |
-
prompt,
|
| 599 |
-
video_input,
|
| 600 |
-
strength,
|
| 601 |
-
seed,
|
| 602 |
-
guidance_scale,
|
| 603 |
-
num_inference_steps,
|
| 604 |
-
randomize_seed,
|
| 605 |
-
use_fp16,
|
| 606 |
-
use_torch_compile,
|
| 607 |
-
use_cpu,
|
| 608 |
-
fps,
|
| 609 |
-
save_frames
|
| 610 |
-
],
|
| 611 |
-
outputs=video_output,
|
| 612 |
-
)
|
| 613 |
|
| 614 |
if __name__ == "__main__":
|
| 615 |
lcm.queue().launch()
|
|
|
|
| 17 |
from PIL import Image, PngImagePlugin
|
| 18 |
import torch
|
| 19 |
|
| 20 |
+
scheduler = LCMScheduler.from_pretrained( "charliebaby2023/cybrpny", subfolder="scheduler")
|
|
|
|
| 21 |
|
| 22 |
pipe = LatentConsistencyModelPipeline.from_pretrained(
|
| 23 |
"charliebaby2023/cybrpny", scheduler = scheduler, safety_checker = None)
|
|
|
|
| 128 |
return paths, seed
|
| 129 |
|
| 130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
+
examples = [ "" ]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
with gr.Blocks() as lcm:
|
| 135 |
with gr.Tab("LCM txt2img"):
|
|
|
|
| 227 |
outputs=[result, seed],
|
| 228 |
)
|
| 229 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
|
| 232 |
if __name__ == "__main__":
|
| 233 |
lcm.queue().launch()
|