from __future__ import annotations from huggingface_hub import HfApi, snapshot_download from concurrent.futures import ThreadPoolExecutor import asyncio import ast import os import random import time import gradio as gr import numpy as np import PIL.Image import torch from diffusers import StableDiffusionPipeline import uuid model_id = "Lykon/dreamshaper-xl-v2-turbo" #DESCRIPTION = '''# Fast Stable Diffusion CPU with Latent Consistency Model #Distilled from [Dreamshaper v7](https://huggingface.co/Lykon/dreamshaper-7) fine‑tune of SD v1-5. #''' #if not torch.cuda.is_available(): #DESCRIPTION += "\n
running on CPU.
" MAX_SEED = np.iinfo(np.int32).max CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1" MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "768")) DTYPE = torch.float32 api = HfApi() executor = ThreadPoolExecutor() model_cache = {} # Load pipeline once, disabling NSFW filter at construction time pipe = StableDiffusionPipeline.from_pretrained( model_id, safety_checker=None, torch_dtype=DTYPE, use_safetensors=True ).to("cpu") def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed def save_image(img, profile: gr.OAuthProfile | None, metadata: dict): unique_name = str(uuid.uuid4()) + '.png' img.save(unique_name) return unique_name def save_images(image_array, profile: gr.OAuthProfile | None, metadata: dict): with ThreadPoolExecutor() as executor: return list(executor.map( lambda args: save_image(*args), zip(image_array, [profile]*len(image_array), [metadata]*len(image_array)) )) def generate( prompt: str, seed: int = 0, width: int = 512, height: int = 512, guidance_scale: float = 8.0, num_inference_steps: int = 4, num_images: int = 1, randomize_seed: bool = False, progress = gr.Progress(track_tqdm=True), profile: gr.OAuthProfile | None = None, ) -> tuple[list[str], int]: # prepare seed seed = randomize_seed_fn(seed, randomize_seed) torch.manual_seed(seed) start_time = time.time() # **Call the pipeline with only supported kwargs:** outputs = pipe( prompt=prompt, negative_prompt="", # required to avoid NoneType in UNet height=height, width=width, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, num_images_per_prompt=num_images, output_type="pil", ).images latency = time.time() - start_time print(f"Generation took {latency:.2f} seconds") paths = save_images( outputs, profile, metadata={ "prompt": prompt, "seed": seed, "width": width, "height": height, "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps, } ) return paths, seed examples = [ "A futuristic cityscape at sunset", "Steampunk airship over mountains", "Portrait of a cyborg queen, hyper‑detailed", ] def validate_and_list_models(hfuser): try: models = api.list_models(author=hfuser) return [model.modelId for model in models if model.pipeline_tag == "text-to-image"] except Exception: return [] def parse_user_model_dict(user_model_dict_str): try: data = ast.literal_eval(user_model_dict_str) if isinstance(data, dict) and all(isinstance(v, list) for v in data.values()): return data return {} except Exception: return {} def load_model(model_id): if model_id in model_cache: return f"{model_id} loaded from cache" try: path = snapshot_download(repo_id=model_id, cache_dir="model_cache", token=os.getenv("HF_TOKEN")) model_cache[model_id] = path return f"{model_id} loaded successfully" except Exception as e: return f"{model_id} failed to load: {str(e)}" def run_models(models, parallel): if parallel: futures = [executor.submit(load_model, m) for m in models] return [f.result() for f in futures] else: return [load_model(m) for m in models] #with gr.Blocks(css="style.css") as demo: with gr.Blocks() as demo: with gr.Row(): with gr.Column(scale=1): with gr.Row(): hfuser_input = gr.Textbox(label="Hugging Face Username") hfuser_models = gr.Dropdown(label="Models from User", choices=[], multiselect=True, visible=False) user_model_dict = gr.Textbox(visible=False, label="Dict Input (e.g., {'username': ['model1', 'model2']})") with gr.Row(): run_btn = gr.Button("Load Models") with gr.Column(scale=3): with gr.Row(): parallel_toggle = gr.Checkbox(label="Load in Parallel", value=True) with gr.Row(): output = gr.Textbox(label="Output", lines=3) with gr.Row(): gr.HTML( f"""this is currently running the Lykon/dreamshaper-xl-v2-turbo model