File size: 19,273 Bytes
1222cee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 |
import json
import time
import asyncio
import uvicorn
from fastapi import FastAPI, Request, HTTPException, Header, Depends
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
from typing import List, Optional, Dict, Any, Union
import requests
from datetime import datetime
import logging
import os
from dotenv import load_dotenv
# 加载环境变量
load_dotenv()
# 配置日志
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger("openai-proxy")
# 创建FastAPI应用
app = FastAPI(
title="OpenAI API Proxy",
description="将OpenAI API请求代理到DeepSider API",
version="1.0.0"
)
# 添加CORS中间件
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# 配置
DEEPSIDER_API_BASE = "https://api.chargpt.ai/api/v2"
DEEPSIDER_TOKEN = os.getenv("DEEPSIDER_TOKEN", "").split(',')
TOKEN_INDEX = 0
# 模型映射表
MODEL_MAPPING = {
"gpt-3.5-turbo": "anthropic/claude-3.5-sonnet",
"gpt-4": "anthropic/claude-3.7-sonnet",
"gpt-4o": "openai/gpt-4o",
"gpt-4-turbo": "openai/gpt-4o",
"gpt-4o-mini": "openai/gpt-4o-mini",
"claude-3-sonnet-20240229": "anthropic/claude-3.5-sonnet",
"claude-3-opus-20240229": "anthropic/claude-3.7-sonnet",
"claude-3.5-sonnet": "anthropic/claude-3.5-sonnet",
"claude-3.7-sonnet": "anthropic/claude-3.7-sonnet",
}
# Token负载均衡状态
token_status = {}
# 请求头
def get_headers():
global TOKEN_INDEX
# 负载均衡,轮询选择token
if len(DEEPSIDER_TOKEN) > 0:
current_token = DEEPSIDER_TOKEN[TOKEN_INDEX % len(DEEPSIDER_TOKEN)]
TOKEN_INDEX = (TOKEN_INDEX + 1) % len(DEEPSIDER_TOKEN)
# 检查token状态
if current_token in token_status and not token_status[current_token]["active"]:
# 如果token不可用,尝试下一个
for i in range(len(DEEPSIDER_TOKEN)):
next_token = DEEPSIDER_TOKEN[(TOKEN_INDEX + i) % len(DEEPSIDER_TOKEN)]
if next_token not in token_status or token_status[next_token]["active"]:
current_token = next_token
TOKEN_INDEX = (TOKEN_INDEX + i + 1) % len(DEEPSIDER_TOKEN)
break
else:
current_token = ""
return {
"accept": "*/*",
"accept-encoding": "gzip, deflate, br, zstd",
"accept-language": "en-US,en;q=0.9,zh-CN;q=0.8,zh;q=0.7",
"content-type": "application/json",
"origin": "chrome-extension://client",
"i-lang": "zh-CN",
"i-version": "1.1.64",
"sec-ch-ua": '"Chromium";v="134", "Not:A-Brand";v="24"',
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": "Windows",
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "cross-site",
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/134.0.0.0 Safari/537.36",
"authorization": f"Bearer {current_token}"
}
# OpenAI API请求模型
class ChatMessage(BaseModel):
role: str
content: str
name: Optional[str] = None
class ChatCompletionRequest(BaseModel):
model: str
messages: List[ChatMessage]
temperature: Optional[float] = 1.0
top_p: Optional[float] = 1.0
n: Optional[int] = 1
stream: Optional[bool] = False
stop: Optional[Union[List[str], str]] = None
max_tokens: Optional[int] = None
presence_penalty: Optional[float] = 0
frequency_penalty: Optional[float] = 0
user: Optional[str] = None
# 初始化token状态
async def initialize_token_status():
"""初始化检查所有token的状态和余额"""
global token_status
for token in DEEPSIDER_TOKEN:
headers = {
"accept": "*/*",
"content-type": "application/json",
"authorization": f"Bearer {token}"
}
try:
# 获取账户余额信息
response = requests.get(
f"{DEEPSIDER_API_BASE.replace('/v2', '')}/quota/retrieve",
headers=headers
)
active = False
quota_info = {}
if response.status_code == 200:
data = response.json()
if data.get('code') == 0:
quota_list = data.get('data', {}).get('list', [])
# 解析余额信息
for item in quota_list:
item_type = item.get('type', '')
available = item.get('available', 0)
if available > 0:
active = True
quota_info[item_type] = {
"total": item.get('total', 0),
"available": available,
"title": item.get('title', '')
}
token_status[token] = {
"active": active,
"quota": quota_info,
"last_checked": datetime.now(),
"failed_count": 0
}
logger.info(f"Token {token[:8]}... 状态:{'活跃' if active else '无效'}")
except Exception as e:
logger.warning(f"检查Token {token[:8]}... 出错:{str(e)}")
token_status[token] = {
"active": False,
"quota": {},
"last_checked": datetime.now(),
"failed_count": 0
}
# 工具函数
def verify_api_key(api_key: str = Header(..., alias="Authorization")):
"""验证API密钥"""
if not api_key.startswith("Bearer "):
raise HTTPException(status_code=401, detail="Invalid API key format")
return api_key.replace("Bearer ", "")
def map_openai_to_deepsider_model(model: str) -> str:
"""将OpenAI模型名称映射到DeepSider模型名称"""
return MODEL_MAPPING.get(model, "anthropic/claude-3.7-sonnet")
def format_messages_for_deepsider(messages: List[ChatMessage]) -> str:
"""格式化消息列表为DeepSider API所需的提示格式"""
prompt = ""
for msg in messages:
role = msg.role
# 将OpenAI的角色映射到DeepSider能理解的格式
if role == "system":
# 系统消息放在开头 作为指导
prompt = f"{msg.content}\n\n" + prompt
elif role == "user":
prompt += f"Human: {msg.content}\n\n"
elif role == "assistant":
prompt += f"Assistant: {msg.content}\n\n"
else:
# 其他角色按用户处理
prompt += f"Human ({role}): {msg.content}\n\n"
# 如果最后一个消息不是用户的 添加一个Human前缀引导模型回答
if messages and messages[-1].role != "user":
prompt += "Human: "
return prompt.strip()
def update_token_status(token: str, success: bool, error_message: str = None):
"""更新token的状态"""
global token_status
if token not in token_status:
token_status[token] = {
"active": True,
"quota": {},
"last_checked": datetime.now(),
"failed_count": 0
}
if not success:
token_status[token]["failed_count"] += 1
# 如果失败消息包含余额不足,标记为不活跃
if error_message and ("配额不足" in error_message or "quota" in error_message.lower()):
token_status[token]["active"] = False
logger.warning(f"Token {token[:8]}... 余额不足,已标记为不活跃")
# 连续失败5次,也标记为不活跃
if token_status[token]["failed_count"] >= 5:
token_status[token]["active"] = False
logger.warning(f"Token {token[:8]}... 连续失败{token_status[token]['failed_count']}次,已标记为不活跃")
else:
# 成功则重置失败计数
token_status[token]["failed_count"] = 0
async def generate_openai_response(full_response: str, request_id: str, model: str) -> Dict:
"""生成符合OpenAI API响应格式的完整响应"""
timestamp = int(time.time())
return {
"id": f"chatcmpl-{request_id}",
"object": "chat.completion",
"created": timestamp,
"model": model,
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": full_response
},
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 0, # 无法准确计算
"completion_tokens": 0, # 无法准确计算
"total_tokens": 0 # 无法准确计算
}
}
async def stream_openai_response(response, request_id: str, model: str, token: str):
"""流式返回OpenAI API格式的响应"""
timestamp = int(time.time())
full_response = ""
try:
# 将DeepSider响应流转换为OpenAI流格式
for line in response.iter_lines():
if not line:
continue
if line.startswith(b'data: '):
try:
data = json.loads(line[6:].decode('utf-8'))
if data.get('code') == 202 and data.get('data', {}).get('type') == "chat":
# 获取正文内容
content = data.get('data', {}).get('content', '')
if content:
full_response += content
# 生成OpenAI格式的流式响应
chunk = {
"id": f"chatcmpl-{request_id}",
"object": "chat.completion.chunk",
"created": timestamp,
"model": model,
"choices": [
{
"index": 0,
"delta": {
"content": content
},
"finish_reason": None
}
]
}
yield f"data: {json.dumps(chunk)}\n\n"
elif data.get('code') == 203:
# 生成完成信号
chunk = {
"id": f"chatcmpl-{request_id}",
"object": "chat.completion.chunk",
"created": timestamp,
"model": model,
"choices": [
{
"index": 0,
"delta": {},
"finish_reason": "stop"
}
]
}
yield f"data: {json.dumps(chunk)}\n\n"
yield "data: [DONE]\n\n"
except json.JSONDecodeError:
logger.warning(f"无法解析响应: {line}")
# 更新token状态(成功)
update_token_status(token, True)
except Exception as e:
logger.error(f"流式响应处理出错: {str(e)}")
# 更新token状态(失败)
update_token_status(token, False, str(e))
# 返回错误信息
error_chunk = {
"id": f"chatcmpl-{request_id}",
"object": "chat.completion.chunk",
"created": timestamp,
"model": model,
"choices": [
{
"index": 0,
"delta": {
"content": f"\n\n[处理响应时出错: {str(e)}]"
},
"finish_reason": "stop"
}
]
}
yield f"data: {json.dumps(error_chunk)}\n\n"
yield "data: [DONE]\n\n"
# 路由定义
@app.get("/")
async def root():
return {"message": "OpenAI API Proxy服务已启动 连接至DeepSider API"}
@app.get("/v1/models")
async def list_models(api_key: str = Depends(verify_api_key)):
"""列出可用的模型"""
models = []
for openai_model, _ in MODEL_MAPPING.items():
models.append({
"id": openai_model,
"object": "model",
"created": int(time.time()),
"owned_by": "openai-proxy"
})
return {
"object": "list",
"data": models
}
@app.post("/v1/chat/completions")
async def create_chat_completion(
request: Request,
api_key: str = Depends(verify_api_key)
):
"""创建聊天完成API - 支持普通请求和流式请求"""
# 解析请求体
body = await request.json()
chat_request = ChatCompletionRequest(**body)
# 生成唯一请求ID
request_id = datetime.now().strftime("%Y%m%d%H%M%S") + str(time.time_ns())[-6:]
# 映射模型
deepsider_model = map_openai_to_deepsider_model(chat_request.model)
# 准备DeepSider API所需的提示
prompt = format_messages_for_deepsider(chat_request.messages)
# 准备请求体
payload = {
"model": deepsider_model,
"prompt": prompt,
"webAccess": "close", # 默认关闭网络访问
"timezone": "Asia/Shanghai"
}
# 获取当前token
headers = get_headers()
current_token = headers["authorization"].replace("Bearer ", "")
try:
# 发送请求到DeepSider API
response = requests.post(
f"{DEEPSIDER_API_BASE}/chat/conversation",
headers=headers,
json=payload,
stream=True
)
# 检查响应状态
if response.status_code != 200:
error_msg = f"DeepSider API请求失败: {response.status_code}"
try:
error_data = response.json()
error_msg += f" - {error_data.get('message', '')}"
except:
error_msg += f" - {response.text}"
logger.error(error_msg)
# 更新token状态
update_token_status(current_token, False, error_msg)
raise HTTPException(status_code=response.status_code, detail="API请求失败")
# 处理流式或非流式响应
if chat_request.stream:
# 返回流式响应
return StreamingResponse(
stream_openai_response(response, request_id, chat_request.model, current_token),
media_type="text/event-stream"
)
else:
# 收集完整响应
full_response = ""
for line in response.iter_lines():
if not line:
continue
if line.startswith(b'data: '):
try:
data = json.loads(line[6:].decode('utf-8'))
if data.get('code') == 202 and data.get('data', {}).get('type') == "chat":
content = data.get('data', {}).get('content', '')
if content:
full_response += content
except json.JSONDecodeError:
pass
# 更新token状态(成功)
update_token_status(current_token, True)
# 返回OpenAI格式的完整响应
return await generate_openai_response(full_response, request_id, chat_request.model)
except HTTPException:
raise
except Exception as e:
logger.exception("处理请求时出错")
# 更新token状态(失败)
update_token_status(current_token, False, str(e))
raise HTTPException(status_code=500, detail=f"内部服务器错误: {str(e)}")
# 查看token状态的端点
@app.get("/admin/tokens")
async def get_token_status(admin_key: str = Header(None, alias="X-Admin-Key")):
"""查看所有token的状态"""
# 简单的管理密钥检查
expected_admin_key = os.getenv("ADMIN_KEY", "admin")
if not admin_key or admin_key != expected_admin_key:
raise HTTPException(status_code=403, detail="Unauthorized")
# 脱敏token,只显示前8位
safe_status = {}
for token, status in token_status.items():
token_display = token[:8] + "..." if len(token) > 8 else token
safe_status[token_display] = status
return {"tokens": safe_status, "active_tokens": sum(1 for s in token_status.values() if s["active"])}
# 手动刷新token状态
@app.post("/admin/refresh-tokens")
async def refresh_token_status(admin_key: str = Header(None, alias="X-Admin-Key")):
"""手动刷新所有token的状态"""
# 简单的管理密钥检查
expected_admin_key = os.getenv("ADMIN_KEY", "admin")
if not admin_key or admin_key != expected_admin_key:
raise HTTPException(status_code=403, detail="Unauthorized")
await initialize_token_status()
return {"message": "所有token状态已刷新", "active_tokens": sum(1 for s in token_status.values() if s["active"])}
# 模拟模型的路由
@app.get("/v1/engines")
@app.get("/v1/engines/{engine_id}")
async def engines_handler():
"""兼容旧的引擎API"""
raise HTTPException(status_code=404, detail="引擎API已被弃用 请使用模型API")
# 错误处理器
@app.exception_handler(404)
async def not_found_handler(request, exc):
return {
"error": {
"message": f"未找到资源: {request.url.path}",
"type": "not_found_error",
"code": "not_found"
}
}, 404
# 启动事件
@app.on_event("startup")
async def startup_event():
"""服务启动时初始化token状态"""
if not DEEPSIDER_TOKEN or (len(DEEPSIDER_TOKEN) == 1 and DEEPSIDER_TOKEN[0] == ""):
logger.warning("未设置DEEPSIDER_TOKEN环境变量 请设置后再重启服务")
else:
logger.info(f"初始化 {len(DEEPSIDER_TOKEN)} 个token状态...")
await initialize_token_status()
active_tokens = sum(1 for s in token_status.values() if s["active"])
logger.info(f"初始化完成 活跃token: {active_tokens}/{len(DEEPSIDER_TOKEN)}")
# 主程序
if __name__ == "__main__":
# 启动服务器
port = int(os.getenv("PORT", "3000"))
logger.info(f"启动OpenAI API代理服务 端口: {port}")
uvicorn.run(app, host="0.0.0.0", port=port)
|