Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from langchain.vectorstores import FAISS
|
3 |
+
import os
|
4 |
+
|
5 |
+
os.environ["OPENAI_API_KEY"] = os.environ["openai"]
|
6 |
+
embeddings = OpenAIEmbeddings(model="text-embedding-3-large") # Using OpenAI's embeddings to represent text
|
7 |
+
|
8 |
+
# Load the vector store
|
9 |
+
vector_store = FAISS.load_local(
|
10 |
+
"yc_index", embeddings, allow_dangerous_deserialization=True
|
11 |
+
)
|
12 |
+
|
13 |
+
# Create a retriever with the vector store
|
14 |
+
retriever = vector_store.as_retriever(search_type="mmr")
|
15 |
+
|
16 |
+
# Function to use the retriever on an input query
|
17 |
+
def retrieve_result(query, k=10):
|
18 |
+
retriever.search_kwargs["k"] = k
|
19 |
+
result = retriever.invoke(query)
|
20 |
+
res = []
|
21 |
+
for r in result:
|
22 |
+
formatted_result = f"""
|
23 |
+
<b>Name</b>: {r.metadata.get('name')}<br>
|
24 |
+
<b>One Liner</b>: {r.metadata.get('oneLiner')}<br>
|
25 |
+
<b>Website</b>: <a href='{r.metadata.get('website')}' target='_blank'>{r.metadata.get('website')}</a><br>
|
26 |
+
<b>Status</b>: {r.metadata.get('status')}<br>
|
27 |
+
<b>Locations</b>: {r.metadata.get('locations')}
|
28 |
+
"""
|
29 |
+
res.append(formatted_result.strip())
|
30 |
+
return "<br><br>".join(res)
|
31 |
+
|
32 |
+
# Set up the Gradio UI using Blocks
|
33 |
+
with gr.Blocks() as demo:
|
34 |
+
gr.Markdown("# YCombinator Startups Semantic Search")
|
35 |
+
#gr.Markdown("Enter a query to search the vector store for relevant results about legal tech startups.")
|
36 |
+
with gr.Row():
|
37 |
+
input_text = gr.Textbox(label="Describe your startup idea")
|
38 |
+
k_value = gr.Number(label="Top K startups", value=5)
|
39 |
+
submit_button = gr.Button("Submit")
|
40 |
+
with gr.Row():
|
41 |
+
output_text = gr.HTML(label="Result")
|
42 |
+
|
43 |
+
submit_button.click(fn=lambda query, k: '', inputs=[input_text, k_value], outputs=output_text)
|
44 |
+
submit_button.click(fn=retrieve_result, inputs=[input_text, k_value], outputs=output_text)
|
45 |
+
|
46 |
+
# Launch the UI
|
47 |
+
demo.launch()
|