chemouda commited on
Commit
d3dcfdf
·
verified ·
1 Parent(s): 553005d

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +47 -0
app.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from langchain.vectorstores import FAISS
3
+ import os
4
+
5
+ os.environ["OPENAI_API_KEY"] = os.environ["openai"]
6
+ embeddings = OpenAIEmbeddings(model="text-embedding-3-large") # Using OpenAI's embeddings to represent text
7
+
8
+ # Load the vector store
9
+ vector_store = FAISS.load_local(
10
+ "yc_index", embeddings, allow_dangerous_deserialization=True
11
+ )
12
+
13
+ # Create a retriever with the vector store
14
+ retriever = vector_store.as_retriever(search_type="mmr")
15
+
16
+ # Function to use the retriever on an input query
17
+ def retrieve_result(query, k=10):
18
+ retriever.search_kwargs["k"] = k
19
+ result = retriever.invoke(query)
20
+ res = []
21
+ for r in result:
22
+ formatted_result = f"""
23
+ <b>Name</b>: {r.metadata.get('name')}<br>
24
+ <b>One Liner</b>: {r.metadata.get('oneLiner')}<br>
25
+ <b>Website</b>: <a href='{r.metadata.get('website')}' target='_blank'>{r.metadata.get('website')}</a><br>
26
+ <b>Status</b>: {r.metadata.get('status')}<br>
27
+ <b>Locations</b>: {r.metadata.get('locations')}
28
+ """
29
+ res.append(formatted_result.strip())
30
+ return "<br><br>".join(res)
31
+
32
+ # Set up the Gradio UI using Blocks
33
+ with gr.Blocks() as demo:
34
+ gr.Markdown("# YCombinator Startups Semantic Search")
35
+ #gr.Markdown("Enter a query to search the vector store for relevant results about legal tech startups.")
36
+ with gr.Row():
37
+ input_text = gr.Textbox(label="Describe your startup idea")
38
+ k_value = gr.Number(label="Top K startups", value=5)
39
+ submit_button = gr.Button("Submit")
40
+ with gr.Row():
41
+ output_text = gr.HTML(label="Result")
42
+
43
+ submit_button.click(fn=lambda query, k: '', inputs=[input_text, k_value], outputs=output_text)
44
+ submit_button.click(fn=retrieve_result, inputs=[input_text, k_value], outputs=output_text)
45
+
46
+ # Launch the UI
47
+ demo.launch()