chen666-666 commited on
Commit
3d9242d
·
verified ·
1 Parent(s): 44dce1a

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +14 -59
  2. requirements.txt +5 -1
  3. utils.py +147 -0
app.py CHANGED
@@ -1,64 +1,19 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from utils import analyze_chat
3
+
4
+ # 创建Gradio界面
5
+ iface = gr.Interface(
6
+ fn=analyze_chat,
7
+ inputs=gr.File(label="上传微信聊天记录(JSON / TXT)"),
8
+ outputs=[
9
+ gr.Textbox(label="实体识别结果", lines=4),
10
+ gr.Textbox(label="人物关系(含关系类型)", lines=6),
11
+ gr.HTML(label="人物关系图谱")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  ],
13
+ title="微信聊天人物关系分析",
14
+ description="上传JSON或TXT格式的微信聊天记录,自动识别人物实体和关系类型,并生成互动图谱。",
15
+ theme="compact"
16
  )
17
 
 
18
  if __name__ == "__main__":
19
+ iface.launch()
requirements.txt CHANGED
@@ -1 +1,5 @@
1
- huggingface_hub==0.25.2
 
 
 
 
 
1
+ gradio==4.25.0
2
+ transformers>=4.40.0
3
+ torch>=2.1.0
4
+ pyvis
5
+ networkx
utils.py ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import tempfile
3
+ import re
4
+ from collections import defaultdict
5
+
6
+ from transformers import (
7
+ AutoTokenizer,
8
+ AutoModelForTokenClassification,
9
+ AutoModelForSequenceClassification,
10
+ pipeline,
11
+ )
12
+ import torch
13
+ from pyvis.network import Network
14
+
15
+
16
+ # -------------------------------
17
+ # 实体识别模型(NER)
18
+ # -------------------------------
19
+ ner_tokenizer = AutoTokenizer.from_pretrained("ckiplab/bert-base-chinese-ner")
20
+ ner_model = AutoModelForTokenClassification.from_pretrained("ckiplab/bert-base-chinese-ner")
21
+ ner_pipeline = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, aggregation_strategy="simple")
22
+
23
+
24
+ # -------------------------------
25
+ # 人物关系分类模型(BERT 分类器)
26
+ # -------------------------------
27
+ rel_model_name = "uer/roberta-base-finetuned-baike-chinese-relation-extraction"
28
+ rel_tokenizer = AutoTokenizer.from_pretrained(rel_model_name)
29
+ rel_model = AutoModelForSequenceClassification.from_pretrained(rel_model_name)
30
+ rel_model.eval()
31
+
32
+ id2label = {
33
+ 0: "夫妻", 1: "父子", 2: "朋友", 3: "师生", 4: "同事", 5: "其他"
34
+ }
35
+
36
+
37
+ def classify_relation_bert(e1, e2, context):
38
+ prompt = f"{e1}和{e2}的关系是?{context}"
39
+ inputs = rel_tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
40
+ with torch.no_grad():
41
+ logits = rel_model(**inputs).logits
42
+ pred = torch.argmax(logits, dim=1).item()
43
+ probs = torch.nn.functional.softmax(logits, dim=1)
44
+ confidence = probs[0, pred].item()
45
+ return f"{id2label[pred]}(置信度 {confidence:.2f})"
46
+
47
+
48
+ # -------------------------------
49
+ # 聊天输入解析
50
+ # -------------------------------
51
+ def parse_input_file(file):
52
+ filename = file.name
53
+ if filename.endswith(".json"):
54
+ return json.load(file)
55
+ elif filename.endswith(".txt"):
56
+ content = file.read().decode("utf-8")
57
+ lines = content.strip().splitlines()
58
+ chat_data = []
59
+ for line in lines:
60
+ match = re.match(r"(\d{4}-\d{2}-\d{2}.*?) (.*?): (.*)", line)
61
+ if match:
62
+ _, sender, message = match.groups()
63
+ chat_data.append({"sender": sender, "message": message})
64
+ return chat_data
65
+ else:
66
+ raise ValueError("不支持的文件格式,请上传 JSON 或 TXT 文件")
67
+
68
+
69
+ # -------------------------------
70
+ # 实体提取函数
71
+ # -------------------------------
72
+ def extract_entities(text):
73
+ results = ner_pipeline(text)
74
+ people = set()
75
+ for r in results:
76
+ if r["entity_group"] == "PER":
77
+ people.add(r["word"])
78
+ return list(people)
79
+
80
+
81
+ # -------------------------------
82
+ # 关系抽取函数(共现 + BERT 分类)
83
+ # -------------------------------
84
+ def extract_relations(chat_data, entities):
85
+ relations = defaultdict(lambda: defaultdict(lambda: {"count": 0, "contexts": []}))
86
+
87
+ for entry in chat_data:
88
+ msg = entry["message"]
89
+ found = [e for e in entities if e in msg]
90
+ for i in range(len(found)):
91
+ for j in range(i + 1, len(found)):
92
+ e1, e2 = found[i], found[j]
93
+ relations[e1][e2]["count"] += 1
94
+ relations[e1][e2]["contexts"].append(msg)
95
+ relations[e2][e1]["count"] += 1
96
+ relations[e2][e1]["contexts"].append(msg)
97
+
98
+ edges = []
99
+ for e1 in relations:
100
+ for e2 in relations[e1]:
101
+ if e1 < e2:
102
+ context_text = " ".join(relations[e1][e2]["contexts"])
103
+ label = classify_relation_bert(e1, e2, context_text)
104
+ edges.append((e1, e2, relations[e1][e2]["count"], label))
105
+ return edges
106
+
107
+
108
+ # -------------------------------
109
+ # 图谱绘制
110
+ # -------------------------------
111
+ def draw_graph(entities, relations):
112
+ g = Network(height="600px", width="100%", notebook=False)
113
+ g.barnes_hut()
114
+ for ent in entities:
115
+ g.add_node(ent, label=ent)
116
+ for e1, e2, weight, label in relations:
117
+ g.add_edge(e1, e2, value=weight, title=f"{label}(互动{weight}次)", label=label)
118
+ tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".html")
119
+ g.show(tmp_file.name)
120
+ with open(tmp_file.name, 'r', encoding='utf-8') as f:
121
+ return f.read()
122
+
123
+
124
+ # -------------------------------
125
+ # 主流程函数
126
+ # -------------------------------
127
+ def analyze_chat(file):
128
+ if file is None:
129
+ return "请上传聊天文件", "", ""
130
+
131
+ try:
132
+ content = parse_input_file(file)
133
+ except Exception as e:
134
+ return f"读取文件失败: {e}", "", ""
135
+
136
+ text = "\n".join([entry["sender"] + ": " + entry["message"] for entry in content])
137
+ entities = extract_entities(text)
138
+ if not entities:
139
+ return "未识别到任何人物实体", "", ""
140
+
141
+ relations = extract_relations(content, entities)
142
+ if not relations:
143
+ return "未发现人物之间的关系", "", ""
144
+
145
+ graph_html = draw_graph(entities, relations)
146
+
147
+ return str(entities), str(relations), graph_html