Spaces:
Sleeping
Sleeping
File size: 25,113 Bytes
d18c4dc ad3d275 d18c4dc ad3d275 d18c4dc ad3d275 d18c4dc ad3d275 d18c4dc ad3d275 d18c4dc ad3d275 d18c4dc ad3d275 d18c4dc ad3d275 d18c4dc ad3d275 d18c4dc ad3d275 d18c4dc ad3d275 d18c4dc ad3d275 d18c4dc 34d39a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 |
import torch
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline, AutoModel
import gradio as gr
import re
import os
import json
import chardet
from sklearn.metrics import precision_score, recall_score, f1_score
import time
from functools import lru_cache # 添加这行导入
# ======================== 数据库模块 ========================
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
from contextlib import contextmanager
import logging
import networkx as nx
from pyvis.network import Network
import pandas as pd
import matplotlib.pyplot as plt
# 配置日志
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
# 使用SQLAlchemy的连接池来管理数据库连接
DATABASE_URL = "mysql+pymysql://user:password@host/dbname" # 请根据实际情况修改连接字符串
# 创建引擎(连接池)
engine = create_engine(DATABASE_URL, pool_size=10, max_overflow=20, echo=True)
# 创建session类
Session = sessionmaker(bind=engine)
@contextmanager
def get_db_connection():
"""
使用上下文管理器获取数据库连接
"""
session = None
try:
session = Session() # 从连接池中获取一个连接
logging.info("✅ 数据库连接已建立")
yield session # 使用session进行数据库操作
except Exception as e:
logging.error(f"❌ 数据库操作时发生错误: {e}")
if session:
session.rollback() # 回滚事务
finally:
if session:
try:
session.commit() # 提交事务
logging.info("✅ 数据库事务已提交")
except Exception as e:
logging.error(f"❌ 提交事务时发生错误: {e}")
finally:
session.close() # 关闭会话,释放连接
logging.info("✅ 数据库连接已关闭")
def save_to_db(table, data):
"""
将数据保存到数据库
:param table: 表名
:param data: 数据字典
"""
try:
valid_tables = ["entities", "relations"] # 只允许保存到这些表
if table not in valid_tables:
raise ValueError(f"Invalid table: {table}")
with get_db_connection() as conn:
if conn:
# 这里的操作假设使用了ORM模型来处理插入,实际根据你数据库的表结构来调整
table_model = get_table_model(table) # 假设你有一个方法来根据表名获得ORM模型
new_record = table_model(**data)
conn.add(new_record)
conn.commit() # 提交事务
except Exception as e:
logging.error(f"❌ 保存数据时发生错误: {e}")
return False
return True
def get_table_model(table_name):
"""
根据表名获取ORM模型(这里假设你有一个映射到数据库表的模型)
:param table_name: 表名
:return: 对应的ORM模型
"""
if table_name == "entities":
from models import Entity # 假设你已经定义了ORM模型
return Entity
elif table_name == "relations":
from models import Relation # 假设你已经定义了ORM模型
return Relation
else:
raise ValueError(f"Unknown table: {table_name}")
# ======================== 模型加载 ========================
NER_MODEL_NAME = "uer/roberta-base-finetuned-cluener2020-chinese"
@lru_cache(maxsize=1)
def get_ner_pipeline():
tokenizer = AutoTokenizer.from_pretrained(NER_MODEL_NAME)
model = AutoModelForTokenClassification.from_pretrained(NER_MODEL_NAME)
return pipeline(
"ner",
model=model,
tokenizer=tokenizer,
aggregation_strategy="first"
)
@lru_cache(maxsize=1)
def get_re_pipeline():
return pipeline(
"text2text-generation",
model=NER_MODEL_NAME,
tokenizer=NER_MODEL_NAME,
max_length=512,
device=0 if torch.cuda.is_available() else -1
)
# chatglm_model, chatglm_tokenizer = None, None
# use_chatglm = False
# try:
# chatglm_model_name = "THUDM/chatglm-6b-int4"
# chatglm_tokenizer = AutoTokenizer.from_pretrained(chatglm_model_name, trust_remote_code=True)
# chatglm_model = AutoModel.from_pretrained(
# chatglm_model_name,
# trust_remote_code=True,
# device_map="cpu",
# torch_dtype=torch.float32
# ).eval()
# use_chatglm = True
# print("✅ 4-bit量化版ChatGLM加载成功")
# except Exception as e:
# print(f"❌ ChatGLM加载失败: {e}")
# ======================== 知识图谱结构 ========================
knowledge_graph = {"entities": set(), "relations": set()}
def update_knowledge_graph(entities, relations):
# 保存实体
for e in entities:
if isinstance(e, dict) and 'text' in e and 'type' in e:
save_to_db('entities', {
'text': e['text'],
'type': e['type'],
'start_pos': e.get('start', -1),
'end_pos': e.get('end', -1),
'source': 'user_input'
})
# 保存关系
for r in relations:
if isinstance(r, dict) and all(k in r for k in ("head", "tail", "relation")):
save_to_db('relations', {
'head_entity': r['head'],
'tail_entity': r['tail'],
'relation_type': r['relation'],
'source_text': '' # 可添加原文关联
})
def visualize_kg_text():
nodes = [f"{ent[0]} ({ent[1]})" for ent in knowledge_graph["entities"]]
edges = [f"{h} --[{r}]-> {t}" for h, t, r in knowledge_graph["relations"]]
return "\n".join(["📌 实体:"] + nodes + ["", "📎 关系:"] + edges)
def visualize_kg_interactive(entities, relations):
"""
生成交互式的知识图谱可视化
"""
# 创建一个新的网络图
net = Network(height="500px", width="100%", bgcolor="#ffffff", font_color="black")
# 添加节点
entity_colors = {
'PER': '#FF6B6B', # 人物-红色
'ORG': '#4ECDC4', # 组织-青色
'LOC': '#45B7D1', # 地点-蓝色
'TIME': '#96CEB4', # 时间-绿色
'MISC': '#D4A5A5' # 其他-灰色
}
# 添加实体节点
for entity in entities:
node_color = entity_colors.get(entity['type'], '#D3D3D3')
net.add_node(entity['text'],
label=f"{entity['text']}\n({entity['type']})",
color=node_color,
title=f"类型: {entity['type']}")
# 添加关系边
for relation in relations:
net.add_edge(relation['head'],
relation['tail'],
label=relation['relation'],
arrows='to')
# 设置物理布局
net.set_options('''
var options = {
"physics": {
"forceAtlas2Based": {
"gravitationalConstant": -50,
"centralGravity": 0.01,
"springLength": 100,
"springConstant": 0.08
},
"maxVelocity": 50,
"solver": "forceAtlas2Based",
"timestep": 0.35,
"stabilization": {"iterations": 150}
}
}
''')
# 生成HTML文件
html_path = "knowledge_graph.html"
net.save_graph(html_path)
return html_path
# ======================== 实体识别(NER) ========================
def merge_adjacent_entities(entities):
if not entities:
return entities
merged = [entities[0]]
for entity in entities[1:]:
last = merged[-1]
# 合并相邻的同类型实体
if (entity["type"] == last["type"] and
entity["start"] == last["end"]):
last["text"] += entity["text"]
last["end"] = entity["end"]
else:
merged.append(entity)
return merged
def ner(text, model_type="bert"):
start_time = time.time()
# 如果使用的是 ChatGLM 模型,执行 ChatGLM 的NER
if model_type == "chatglm" and use_chatglm:
try:
prompt = f"""请从以下文本中识别所有实体,严格按照JSON列表格式返回,每个实体包含text、type、start、end字段:
示例:[{{"text": "北京", "type": "LOC", "start": 0, "end": 2}}]
文本:{text}"""
response = chatglm_model.chat(chatglm_tokenizer, prompt, temperature=0.1)
if isinstance(response, tuple):
response = response[0]
try:
json_str = re.search(r'\[.*\]', response, re.DOTALL).group()
entities = json.loads(json_str)
valid_entities = [ent for ent in entities if all(k in ent for k in ("text", "type", "start", "end"))]
return valid_entities, time.time() - start_time
except Exception as e:
print(f"JSON解析失败: {e}")
return [], time.time() - start_time
except Exception as e:
print(f"ChatGLM调用失败: {e}")
return [], time.time() - start_time
# 使用BERT NER
text_chunks = [text[i:i + 510] for i in range(0, len(text), 510)] # 安全分段
raw_results = []
# 获取NER pipeline
ner_pipeline = get_ner_pipeline() # 使用缓存的pipeline
for idx, chunk in enumerate(text_chunks):
chunk_results = ner_pipeline(chunk) # 使用获取的pipeline
for r in chunk_results:
r["start"] += idx * 510
r["end"] += idx * 510
raw_results.extend(chunk_results)
entities = [{
"text": r['word'].replace(' ', ''),
"start": r['start'],
"end": r['end'],
"type": LABEL_MAPPING.get(r.get('entity_group') or r.get('entity'), r.get('entity_group') or r.get('entity'))
} for r in raw_results]
entities = merge_adjacent_entities(entities)
return entities, time.time() - start_time
# ------------------ 实体类型标准化 ------------------
LABEL_MAPPING = {
"address": "LOC",
"company": "ORG",
"name": "PER",
"organization": "ORG",
"position": "TITLE",
"government": "ORG",
"scene": "LOC",
"book": "WORK",
"movie": "WORK",
"game": "WORK"
}
# 提取实体
entities, processing_time = ner("Google in New York met Alice")
# 标准化实体类型
for e in entities:
e["type"] = LABEL_MAPPING.get(e.get("type"), e.get("type"))
# 打印标准化后的实体
print(f"[DEBUG] 标准化后实体列表: {[{'text': e['text'], 'type': e['type']} for e in entities]}")
# 打印处理时间
print(f"处理时间: {processing_time:.2f}秒")
# ======================== 关系抽取(RE) ========================
@lru_cache(maxsize=1)
def get_re_pipeline():
tokenizer = AutoTokenizer.from_pretrained(NER_MODEL_NAME)
model = AutoModelForTokenClassification.from_pretrained(NER_MODEL_NAME)
return pipeline(
"ner", # 使用NER pipeline
model=model,
tokenizer=tokenizer,
aggregation_strategy="first"
)
def re_extract(entities, text, use_bert_model=True):
if not entities or not text:
return [], 0
start_time = time.time()
try:
# 使用规则匹配关系
relations = []
# 定义关系关键词和对应的实体类型约束
relation_rules = {
"位于": {
"keywords": ["位于", "在", "坐落于"],
"valid_types": {
"head": ["ORG", "PER", "LOC"],
"tail": ["LOC"]
}
},
"属于": {
"keywords": ["属于", "是", "为"],
"valid_types": {
"head": ["ORG", "PER"],
"tail": ["ORG", "LOC"]
}
},
"任职于": {
"keywords": ["任职于", "就职于", "工作于"],
"valid_types": {
"head": ["PER"],
"tail": ["ORG"]
}
}
}
# 预处理实体,去除重复和部分匹配
processed_entities = []
for e in entities:
# 检查是否与已有实体重叠
is_subset = False
for pe in processed_entities:
if e["text"] in pe["text"] and e["text"] != pe["text"]:
is_subset = True
break
if not is_subset:
processed_entities.append(e)
# 遍历文本中的每个句子
sentences = re.split('[。!?.!?]', text)
for sentence in sentences:
if not sentence.strip():
continue
# 获取当前句子中的实体
sentence_entities = [e for e in processed_entities if e["text"] in sentence]
# 检查每个关系类型
for rel_type, rule in relation_rules.items():
for keyword in rule["keywords"]:
if keyword in sentence:
# 在句子中查找符合类型约束的实体对
for i, ent1 in enumerate(sentence_entities):
for j, ent2 in enumerate(sentence_entities):
if i != j: # 避免自循环
# 检查实体类型是否符合规则
if (ent1["type"] in rule["valid_types"]["head"] and
ent2["type"] in rule["valid_types"]["tail"]):
# 检查实体在句子中的位置关系
if sentence.find(ent1["text"]) < sentence.find(ent2["text"]):
relations.append({
"head": ent1["text"],
"tail": ent2["text"],
"relation": rel_type
})
# 去重
unique_relations = []
seen = set()
for rel in relations:
rel_key = (rel["head"], rel["tail"], rel["relation"])
if rel_key not in seen:
seen.add(rel_key)
unique_relations.append(rel)
return unique_relations, time.time() - start_time
except Exception as e:
logging.error(f"关系抽取失败: {e}")
return [], time.time() - start_time
# ======================== 文本分析主流程 ========================
def create_knowledge_graph(entities, relations):
"""
创建知识图谱可视化
"""
# 创建一个新的有向图
G = nx.DiGraph()
# 设置实体类型的颜色映射
entity_colors = {
'PER': '#FF6B6B', # 人物-红色
'ORG': '#4ECDC4', # 组织-青色
'LOC': '#45B7D1', # 地点-蓝色
'TIME': '#96CEB4', # 时间-绿色
'TITLE': '#D4A5A5' # 职位-粉色
}
# 添加节点
node_colors = []
for entity in entities:
G.add_node(entity['text'])
node_colors.append(entity_colors.get(entity['type'], '#D3D3D3'))
# 添加边
for relation in relations:
G.add_edge(relation['head'], relation['tail'], label=relation['relation'])
# 创建图形
plt.figure(figsize=(12, 8))
pos = nx.spring_layout(G, k=1, iterations=50)
# 绘制节点
nx.draw_networkx_nodes(G, pos, node_color=node_colors, node_size=1000, alpha=0.8)
# 绘制边
nx.draw_networkx_edges(G, pos, edge_color='gray', arrows=True, arrowsize=20)
# 绘制标签
nx.draw_networkx_labels(G, pos, font_size=10, font_family='SimHei')
# 绘制边的标签
edge_labels = nx.get_edge_attributes(G, 'label')
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=8, font_family='SimHei')
# 添加图例
legend_elements = [
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=color, label=label, markersize=10)
for label, color in entity_colors.items()
]
plt.legend(handles=legend_elements, loc='upper right', bbox_to_anchor=(1.15, 1))
# 设置图形属性
plt.title("知识图谱", fontsize=16, fontfamily='SimHei')
plt.axis('off')
# 保存图形到临时文件
temp_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "temp")
os.makedirs(temp_dir, exist_ok=True)
timestamp = int(time.time())
image_path = os.path.join(temp_dir, f"kg_{timestamp}.png")
plt.savefig(image_path, bbox_inches='tight', dpi=300)
plt.close()
# 返回图片路径
return image_path
def process_text(text, model_type="bert"):
"""
处理文本,进行实体识别和关系抽取
"""
start_time = time.time()
# 实体识别
entities, ner_duration = ner(text, model_type)
if not entities:
return "", "", "", f"{time.time() - start_time:.2f} 秒"
# 关系抽取
relations, re_duration = re_extract(entities, text)
# 生成文本格式的实体和关系描述
ent_text = "📌 实体:\n" + "\n".join([f"{e['text']} ({e['type']})" for e in entities])
rel_text = "\n\n📎 关系:\n" + "\n".join([f"{r['head']} --[{r['relation']}]--> {r['tail']}" for r in relations])
# 生成知识图谱
kg_image = create_knowledge_graph(entities, relations)
total_duration = time.time() - start_time
return ent_text, rel_text, kg_image, f"{total_duration:.2f} 秒"
def process_file(file, model_type="bert"):
try:
with open(file.name, 'rb') as f:
content = f.read()
if len(content) > 5 * 1024 * 1024:
return "❌ 文件太大", "", "", ""
# 检测编码
try:
encoding = chardet.detect(content)['encoding'] or 'utf-8'
text = content.decode(encoding)
except UnicodeDecodeError:
# 尝试常见中文编码
for enc in ['gb18030', 'utf-16', 'big5']:
try:
text = content.decode(enc)
break
except:
continue
else:
return "❌ 编码解析失败", "", "", ""
# 直接调用process_text处理文本
return process_text(text, model_type)
except Exception as e:
logging.error(f"文件处理错误: {str(e)}")
return f"❌ 文件处理错误: {str(e)}", "", "", ""
# ======================== 模型评估与自动标注 ========================
def convert_telegram_json_to_eval_format(path):
with open(path, encoding="utf-8") as f:
data = json.load(f)
if isinstance(data, dict) and "text" in data:
return [{"text": data["text"], "entities": [
{"text": data["text"][e["start"]:e["end"]]} for e in data.get("entities", [])
]}]
elif isinstance(data, list):
return data
elif isinstance(data, dict) and "messages" in data:
result = []
for m in data.get("messages", []):
if isinstance(m.get("text"), str):
result.append({"text": m["text"], "entities": []})
elif isinstance(m.get("text"), list):
txt = ''.join([x["text"] if isinstance(x, dict) else x for x in m["text"]])
result.append({"text": txt, "entities": []})
return result
return []
def evaluate_ner_model(data, model_type):
tp, fp, fn = 0, 0, 0
POS_TOLERANCE = 1
for item in data:
text = item["text"]
# 处理标注数据
gold_entities = []
for e in item.get("entities", []):
if "text" in e and "type" in e:
norm_type = LABEL_MAPPING.get(e["type"], e["type"])
gold_entities.append({
"text": e["text"],
"type": norm_type,
"start": e.get("start", -1),
"end": e.get("end", -1)
})
# 获取预测结果
pred_entities, _ = ner(text, model_type)
# 初始化匹配状态
matched_gold = [False] * len(gold_entities)
matched_pred = [False] * len(pred_entities)
# 遍历预测实体寻找匹配
for p_idx, p in enumerate(pred_entities):
for g_idx, g in enumerate(gold_entities):
if not matched_gold[g_idx] and \
p["text"] == g["text"] and \
p["type"] == g["type"] and \
abs(p["start"] - g["start"]) <= POS_TOLERANCE and \
abs(p["end"] - g["end"]) <= POS_TOLERANCE:
matched_gold[g_idx] = True
matched_pred[p_idx] = True
break
# 统计指标
tp += sum(matched_pred)
fp += len(pred_entities) - sum(matched_pred)
fn += len(gold_entities) - sum(matched_gold)
# 处理除零情况
precision = tp / (tp + fp) if (tp + fp) > 0 else 0
recall = tp / (tp + fn) if (tp + fn) > 0 else 0
f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
return (f"Precision: {precision:.2f}\n"
f"Recall: {recall:.2f}\n"
f"F1: {f1:.2f}")
def auto_annotate(file, model_type):
data = convert_telegram_json_to_eval_format(file.name)
for item in data:
ents, _ = ner(item["text"], model_type)
item["entities"] = ents
return json.dumps(data, ensure_ascii=False, indent=2)
def save_json(json_text):
fname = f"auto_labeled_{int(time.time())}.json"
with open(fname, "w", encoding="utf-8") as f:
f.write(json_text)
return fname
# ======================== 数据集导入 ========================
def import_dataset(path="D:/云边智算/暗语识别/filtered_results"):
import os
import json
for filename in os.listdir(path):
if filename.endswith('.json'):
filepath = os.path.join(path, filename)
with open(filepath, 'r', encoding='utf-8') as f:
data = json.load(f)
# 调用现有处理流程
process_text(data['text'])
print(f"已处理文件: {filename}")
# ======================== Gradio 界面 ========================
with gr.Blocks(css="""
.kg-graph {height: 700px; overflow-y: auto;}
.warning {color: #ff6b6b;}
.error {color: #ff0000; padding: 10px; background-color: #ffeeee; border-radius: 5px;}
""") as demo:
gr.Markdown("# 🤖 聊天记录实体关系识别系统")
with gr.Tab("📄 文本分析"):
input_text = gr.Textbox(lines=6, label="输入文本")
model_type = gr.Radio(["bert", "chatglm"], value="bert", label="选择模型")
btn = gr.Button("开始分析")
out1 = gr.Textbox(label="识别实体")
out2 = gr.Textbox(label="识别关系")
out3 = gr.Image(label="知识图谱")
out4 = gr.Textbox(label="耗时")
btn.click(fn=process_text, inputs=[input_text, model_type], outputs=[out1, out2, out3, out4])
with gr.Tab("🗂 文件分析"):
file_input = gr.File(file_types=[".txt", ".json"])
file_btn = gr.Button("上传并分析")
fout1, fout2, fout3, fout4 = gr.Textbox(), gr.Textbox(), gr.Textbox(), gr.Textbox()
file_btn.click(fn=process_file, inputs=[file_input, model_type], outputs=[fout1, fout2, fout3, fout4])
with gr.Tab("📊 模型评估"):
eval_file = gr.File(label="上传标注 JSON")
eval_model = gr.Radio(["bert", "chatglm"], value="bert")
eval_btn = gr.Button("开始评估")
eval_output = gr.Textbox(label="评估结果", lines=5)
eval_btn.click(lambda f, m: evaluate_ner_model(convert_telegram_json_to_eval_format(f.name), m),
[eval_file, eval_model], eval_output)
with gr.Tab("✏️ 自动标注"):
raw_file = gr.File(label="上传 Telegram 原始 JSON")
auto_model = gr.Radio(["bert", "chatglm"], value="bert")
auto_btn = gr.Button("自动标注")
marked_texts = gr.Textbox(label="标注结果", lines=20)
download_btn = gr.Button("💾 下载标注文件")
auto_btn.click(fn=auto_annotate, inputs=[raw_file, auto_model], outputs=marked_texts)
download_btn.click(fn=save_json, inputs=marked_texts, outputs=gr.File())
with gr.Tab("📂 数据管理"):
gr.Markdown("### 数据集导入")
dataset_path = gr.Textbox(
value="D:/云边智算/暗语识别/filtered_results",
label="数据集路径"
)
import_btn = gr.Button("导入数据集到数据库")
import_output = gr.Textbox(label="导入日志")
import_btn.click(fn=lambda: import_dataset(dataset_path.value), outputs=import_output)
demo.launch(server_name="0.0.0.0", server_port=7860) |