Spaces:
Sleeping
Sleeping
| import torch | |
| from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline, AutoModel | |
| import gradio as gr | |
| import re | |
| import os | |
| import json | |
| import chardet | |
| from sklearn.metrics import precision_score, recall_score, f1_score | |
| import time | |
| from functools import lru_cache # 添加这行导入 | |
| # ======================== 数据库模块 ======================== | |
| from sqlalchemy import create_engine | |
| from sqlalchemy.orm import sessionmaker | |
| from contextlib import contextmanager | |
| import logging | |
| import networkx as nx | |
| from pyvis.network import Network | |
| import pandas as pd | |
| import matplotlib.pyplot as plt | |
| # 配置日志 | |
| logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") | |
| # 使用SQLAlchemy的连接池来管理数据库连接 | |
| DATABASE_URL = "mysql+pymysql://user:password@host/dbname" # 请根据实际情况修改连接字符串 | |
| # 创建引擎(连接池) | |
| engine = create_engine(DATABASE_URL, pool_size=10, max_overflow=20, echo=True) | |
| # 创建session类 | |
| Session = sessionmaker(bind=engine) | |
| def get_db_connection(): | |
| """ | |
| 使用上下文管理器获取数据库连接 | |
| """ | |
| session = None | |
| try: | |
| session = Session() # 从连接池中获取一个连接 | |
| logging.info("✅ 数据库连接已建立") | |
| yield session # 使用session进行数据库操作 | |
| except Exception as e: | |
| logging.error(f"❌ 数据库操作时发生错误: {e}") | |
| if session: | |
| session.rollback() # 回滚事务 | |
| finally: | |
| if session: | |
| try: | |
| session.commit() # 提交事务 | |
| logging.info("✅ 数据库事务已提交") | |
| except Exception as e: | |
| logging.error(f"❌ 提交事务时发生错误: {e}") | |
| finally: | |
| session.close() # 关闭会话,释放连接 | |
| logging.info("✅ 数据库连接已关闭") | |
| def save_to_db(table, data): | |
| """ | |
| 将数据保存到数据库 | |
| :param table: 表名 | |
| :param data: 数据字典 | |
| """ | |
| try: | |
| valid_tables = ["entities", "relations"] # 只允许保存到这些表 | |
| if table not in valid_tables: | |
| raise ValueError(f"Invalid table: {table}") | |
| with get_db_connection() as conn: | |
| if conn: | |
| # 这里的操作假设使用了ORM模型来处理插入,实际根据你数据库的表结构来调整 | |
| table_model = get_table_model(table) # 假设你有一个方法来根据表名获得ORM模型 | |
| new_record = table_model(**data) | |
| conn.add(new_record) | |
| conn.commit() # 提交事务 | |
| except Exception as e: | |
| logging.error(f"❌ 保存数据时发生错误: {e}") | |
| return False | |
| return True | |
| def get_table_model(table_name): | |
| """ | |
| 根据表名获取ORM模型(这里假设你有一个映射到数据库表的模型) | |
| :param table_name: 表名 | |
| :return: 对应的ORM模型 | |
| """ | |
| if table_name == "entities": | |
| from models import Entity # 假设你已经定义了ORM模型 | |
| return Entity | |
| elif table_name == "relations": | |
| from models import Relation # 假设你已经定义了ORM模型 | |
| return Relation | |
| else: | |
| raise ValueError(f"Unknown table: {table_name}") | |
| # ======================== 模型加载 ======================== | |
| NER_MODEL_NAME = "uer/roberta-base-finetuned-cluener2020-chinese" | |
| def get_ner_pipeline(): | |
| tokenizer = AutoTokenizer.from_pretrained(NER_MODEL_NAME) | |
| model = AutoModelForTokenClassification.from_pretrained(NER_MODEL_NAME) | |
| return pipeline( | |
| "ner", | |
| model=model, | |
| tokenizer=tokenizer, | |
| aggregation_strategy="first" | |
| ) | |
| def get_re_pipeline(): | |
| return pipeline( | |
| "text2text-generation", | |
| model=NER_MODEL_NAME, | |
| tokenizer=NER_MODEL_NAME, | |
| max_length=512, | |
| device=0 if torch.cuda.is_available() else -1 | |
| ) | |
| # chatglm_model, chatglm_tokenizer = None, None | |
| # use_chatglm = False | |
| # try: | |
| # chatglm_model_name = "THUDM/chatglm-6b-int4" | |
| # chatglm_tokenizer = AutoTokenizer.from_pretrained(chatglm_model_name, trust_remote_code=True) | |
| # chatglm_model = AutoModel.from_pretrained( | |
| # chatglm_model_name, | |
| # trust_remote_code=True, | |
| # device_map="cpu", | |
| # torch_dtype=torch.float32 | |
| # ).eval() | |
| # use_chatglm = True | |
| # print("✅ 4-bit量化版ChatGLM加载成功") | |
| # except Exception as e: | |
| # print(f"❌ ChatGLM加载失败: {e}") | |
| # ======================== 知识图谱结构 ======================== | |
| knowledge_graph = {"entities": set(), "relations": set()} | |
| def update_knowledge_graph(entities, relations): | |
| # 保存实体 | |
| for e in entities: | |
| if isinstance(e, dict) and 'text' in e and 'type' in e: | |
| save_to_db('entities', { | |
| 'text': e['text'], | |
| 'type': e['type'], | |
| 'start_pos': e.get('start', -1), | |
| 'end_pos': e.get('end', -1), | |
| 'source': 'user_input' | |
| }) | |
| # 保存关系 | |
| for r in relations: | |
| if isinstance(r, dict) and all(k in r for k in ("head", "tail", "relation")): | |
| save_to_db('relations', { | |
| 'head_entity': r['head'], | |
| 'tail_entity': r['tail'], | |
| 'relation_type': r['relation'], | |
| 'source_text': '' # 可添加原文关联 | |
| }) | |
| def visualize_kg_text(): | |
| nodes = [f"{ent[0]} ({ent[1]})" for ent in knowledge_graph["entities"]] | |
| edges = [f"{h} --[{r}]-> {t}" for h, t, r in knowledge_graph["relations"]] | |
| return "\n".join(["📌 实体:"] + nodes + ["", "📎 关系:"] + edges) | |
| def visualize_kg_interactive(entities, relations): | |
| """ | |
| 生成交互式的知识图谱可视化 | |
| """ | |
| # 创建一个新的网络图 | |
| net = Network(height="500px", width="100%", bgcolor="#ffffff", font_color="black") | |
| # 添加节点 | |
| entity_colors = { | |
| 'PER': '#FF6B6B', # 人物-红色 | |
| 'ORG': '#4ECDC4', # 组织-青色 | |
| 'LOC': '#45B7D1', # 地点-蓝色 | |
| 'TIME': '#96CEB4', # 时间-绿色 | |
| 'MISC': '#D4A5A5' # 其他-灰色 | |
| } | |
| # 添加实体节点 | |
| for entity in entities: | |
| node_color = entity_colors.get(entity['type'], '#D3D3D3') | |
| net.add_node(entity['text'], | |
| label=f"{entity['text']}\n({entity['type']})", | |
| color=node_color, | |
| title=f"类型: {entity['type']}") | |
| # 添加关系边 | |
| for relation in relations: | |
| net.add_edge(relation['head'], | |
| relation['tail'], | |
| label=relation['relation'], | |
| arrows='to') | |
| # 设置物理布局 | |
| net.set_options(''' | |
| var options = { | |
| "physics": { | |
| "forceAtlas2Based": { | |
| "gravitationalConstant": -50, | |
| "centralGravity": 0.01, | |
| "springLength": 100, | |
| "springConstant": 0.08 | |
| }, | |
| "maxVelocity": 50, | |
| "solver": "forceAtlas2Based", | |
| "timestep": 0.35, | |
| "stabilization": {"iterations": 150} | |
| } | |
| } | |
| ''') | |
| # 生成HTML文件 | |
| html_path = "knowledge_graph.html" | |
| net.save_graph(html_path) | |
| return html_path | |
| # ======================== 实体识别(NER) ======================== | |
| def merge_adjacent_entities(entities): | |
| if not entities: | |
| return entities | |
| merged = [entities[0]] | |
| for entity in entities[1:]: | |
| last = merged[-1] | |
| # 合并相邻的同类型实体 | |
| if (entity["type"] == last["type"] and | |
| entity["start"] == last["end"]): | |
| last["text"] += entity["text"] | |
| last["end"] = entity["end"] | |
| else: | |
| merged.append(entity) | |
| return merged | |
| def ner(text, model_type="bert"): | |
| start_time = time.time() | |
| # 如果使用的是 ChatGLM 模型,执行 ChatGLM 的NER | |
| if model_type == "chatglm" and use_chatglm: | |
| try: | |
| prompt = f"""请从以下文本中识别所有实体,严格按照JSON列表格式返回,每个实体包含text、type、start、end字段: | |
| 示例:[{{"text": "北京", "type": "LOC", "start": 0, "end": 2}}] | |
| 文本:{text}""" | |
| response = chatglm_model.chat(chatglm_tokenizer, prompt, temperature=0.1) | |
| if isinstance(response, tuple): | |
| response = response[0] | |
| try: | |
| json_str = re.search(r'\[.*\]', response, re.DOTALL).group() | |
| entities = json.loads(json_str) | |
| valid_entities = [ent for ent in entities if all(k in ent for k in ("text", "type", "start", "end"))] | |
| return valid_entities, time.time() - start_time | |
| except Exception as e: | |
| print(f"JSON解析失败: {e}") | |
| return [], time.time() - start_time | |
| except Exception as e: | |
| print(f"ChatGLM调用失败: {e}") | |
| return [], time.time() - start_time | |
| # 使用BERT NER | |
| text_chunks = [text[i:i + 510] for i in range(0, len(text), 510)] # 安全分段 | |
| raw_results = [] | |
| # 获取NER pipeline | |
| ner_pipeline = get_ner_pipeline() # 使用缓存的pipeline | |
| for idx, chunk in enumerate(text_chunks): | |
| chunk_results = ner_pipeline(chunk) # 使用获取的pipeline | |
| for r in chunk_results: | |
| r["start"] += idx * 510 | |
| r["end"] += idx * 510 | |
| raw_results.extend(chunk_results) | |
| entities = [{ | |
| "text": r['word'].replace(' ', ''), | |
| "start": r['start'], | |
| "end": r['end'], | |
| "type": LABEL_MAPPING.get(r.get('entity_group') or r.get('entity'), r.get('entity_group') or r.get('entity')) | |
| } for r in raw_results] | |
| entities = merge_adjacent_entities(entities) | |
| return entities, time.time() - start_time | |
| # ------------------ 实体类型标准化 ------------------ | |
| LABEL_MAPPING = { | |
| "address": "LOC", | |
| "company": "ORG", | |
| "name": "PER", | |
| "organization": "ORG", | |
| "position": "TITLE", | |
| "government": "ORG", | |
| "scene": "LOC", | |
| "book": "WORK", | |
| "movie": "WORK", | |
| "game": "WORK" | |
| } | |
| # 提取实体 | |
| entities, processing_time = ner("Google in New York met Alice") | |
| # 标准化实体类型 | |
| for e in entities: | |
| e["type"] = LABEL_MAPPING.get(e.get("type"), e.get("type")) | |
| # 打印标准化后的实体 | |
| print(f"[DEBUG] 标准化后实体列表: {[{'text': e['text'], 'type': e['type']} for e in entities]}") | |
| # 打印处理时间 | |
| print(f"处理时间: {processing_time:.2f}秒") | |
| # ======================== 关系抽取(RE) ======================== | |
| def get_re_pipeline(): | |
| tokenizer = AutoTokenizer.from_pretrained(NER_MODEL_NAME) | |
| model = AutoModelForTokenClassification.from_pretrained(NER_MODEL_NAME) | |
| return pipeline( | |
| "ner", # 使用NER pipeline | |
| model=model, | |
| tokenizer=tokenizer, | |
| aggregation_strategy="first" | |
| ) | |
| def re_extract(entities, text, use_bert_model=True): | |
| if not entities or not text: | |
| return [], 0 | |
| start_time = time.time() | |
| try: | |
| # 使用规则匹配关系 | |
| relations = [] | |
| # 定义关系关键词和对应的实体类型约束 | |
| relation_rules = { | |
| "位于": { | |
| "keywords": ["位于", "在", "坐落于"], | |
| "valid_types": { | |
| "head": ["ORG", "PER", "LOC"], | |
| "tail": ["LOC"] | |
| } | |
| }, | |
| "属于": { | |
| "keywords": ["属于", "是", "为"], | |
| "valid_types": { | |
| "head": ["ORG", "PER"], | |
| "tail": ["ORG", "LOC"] | |
| } | |
| }, | |
| "任职于": { | |
| "keywords": ["任职于", "就职于", "工作于"], | |
| "valid_types": { | |
| "head": ["PER"], | |
| "tail": ["ORG"] | |
| } | |
| } | |
| } | |
| # 预处理实体,去除重复和部分匹配 | |
| processed_entities = [] | |
| for e in entities: | |
| # 检查是否与已有实体重叠 | |
| is_subset = False | |
| for pe in processed_entities: | |
| if e["text"] in pe["text"] and e["text"] != pe["text"]: | |
| is_subset = True | |
| break | |
| if not is_subset: | |
| processed_entities.append(e) | |
| # 遍历文本中的每个句子 | |
| sentences = re.split('[。!?.!?]', text) | |
| for sentence in sentences: | |
| if not sentence.strip(): | |
| continue | |
| # 获取当前句子中的实体 | |
| sentence_entities = [e for e in processed_entities if e["text"] in sentence] | |
| # 检查每个关系类型 | |
| for rel_type, rule in relation_rules.items(): | |
| for keyword in rule["keywords"]: | |
| if keyword in sentence: | |
| # 在句子中查找符合类型约束的实体对 | |
| for i, ent1 in enumerate(sentence_entities): | |
| for j, ent2 in enumerate(sentence_entities): | |
| if i != j: # 避免自循环 | |
| # 检查实体类型是否符合规则 | |
| if (ent1["type"] in rule["valid_types"]["head"] and | |
| ent2["type"] in rule["valid_types"]["tail"]): | |
| # 检查实体在句子中的位置关系 | |
| if sentence.find(ent1["text"]) < sentence.find(ent2["text"]): | |
| relations.append({ | |
| "head": ent1["text"], | |
| "tail": ent2["text"], | |
| "relation": rel_type | |
| }) | |
| # 去重 | |
| unique_relations = [] | |
| seen = set() | |
| for rel in relations: | |
| rel_key = (rel["head"], rel["tail"], rel["relation"]) | |
| if rel_key not in seen: | |
| seen.add(rel_key) | |
| unique_relations.append(rel) | |
| return unique_relations, time.time() - start_time | |
| except Exception as e: | |
| logging.error(f"关系抽取失败: {e}") | |
| return [], time.time() - start_time | |
| # ======================== 文本分析主流程 ======================== | |
| def create_knowledge_graph(entities, relations): | |
| """ | |
| 创建知识图谱可视化 | |
| """ | |
| # 创建一个新的有向图 | |
| G = nx.DiGraph() | |
| # 设置实体类型的颜色映射 | |
| entity_colors = { | |
| 'PER': '#FF6B6B', # 人物-红色 | |
| 'ORG': '#4ECDC4', # 组织-青色 | |
| 'LOC': '#45B7D1', # 地点-蓝色 | |
| 'TIME': '#96CEB4', # 时间-绿色 | |
| 'TITLE': '#D4A5A5' # 职位-粉色 | |
| } | |
| # 添加节点 | |
| node_colors = [] | |
| for entity in entities: | |
| G.add_node(entity['text']) | |
| node_colors.append(entity_colors.get(entity['type'], '#D3D3D3')) | |
| # 添加边 | |
| for relation in relations: | |
| G.add_edge(relation['head'], relation['tail'], label=relation['relation']) | |
| # 创建图形 | |
| plt.figure(figsize=(12, 8)) | |
| pos = nx.spring_layout(G, k=1, iterations=50) | |
| # 绘制节点 | |
| nx.draw_networkx_nodes(G, pos, node_color=node_colors, node_size=1000, alpha=0.8) | |
| # 绘制边 | |
| nx.draw_networkx_edges(G, pos, edge_color='gray', arrows=True, arrowsize=20) | |
| # 绘制标签 | |
| nx.draw_networkx_labels(G, pos, font_size=10, font_family='SimHei') | |
| # 绘制边的标签 | |
| edge_labels = nx.get_edge_attributes(G, 'label') | |
| nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=8, font_family='SimHei') | |
| # 添加图例 | |
| legend_elements = [ | |
| plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=color, label=label, markersize=10) | |
| for label, color in entity_colors.items() | |
| ] | |
| plt.legend(handles=legend_elements, loc='upper right', bbox_to_anchor=(1.15, 1)) | |
| # 设置图形属性 | |
| plt.title("知识图谱", fontsize=16, fontfamily='SimHei') | |
| plt.axis('off') | |
| # 保存图形到临时文件 | |
| temp_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "temp") | |
| os.makedirs(temp_dir, exist_ok=True) | |
| timestamp = int(time.time()) | |
| image_path = os.path.join(temp_dir, f"kg_{timestamp}.png") | |
| plt.savefig(image_path, bbox_inches='tight', dpi=300) | |
| plt.close() | |
| # 返回图片路径 | |
| return image_path | |
| def process_text(text, model_type="bert"): | |
| """ | |
| 处理文本,进行实体识别和关系抽取 | |
| """ | |
| start_time = time.time() | |
| # 实体识别 | |
| entities, ner_duration = ner(text, model_type) | |
| if not entities: | |
| return "", "", "", f"{time.time() - start_time:.2f} 秒" | |
| # 关系抽取 | |
| relations, re_duration = re_extract(entities, text) | |
| # 生成文本格式的实体和关系描述 | |
| ent_text = "📌 实体:\n" + "\n".join([f"{e['text']} ({e['type']})" for e in entities]) | |
| rel_text = "\n\n📎 关系:\n" + "\n".join([f"{r['head']} --[{r['relation']}]--> {r['tail']}" for r in relations]) | |
| # 生成知识图谱 | |
| kg_image = create_knowledge_graph(entities, relations) | |
| total_duration = time.time() - start_time | |
| return ent_text, rel_text, kg_image, f"{total_duration:.2f} 秒" | |
| def process_file(file, model_type="bert"): | |
| try: | |
| with open(file.name, 'rb') as f: | |
| content = f.read() | |
| if len(content) > 5 * 1024 * 1024: | |
| return "❌ 文件太大", "", "", "" | |
| # 检测编码 | |
| try: | |
| encoding = chardet.detect(content)['encoding'] or 'utf-8' | |
| text = content.decode(encoding) | |
| except UnicodeDecodeError: | |
| # 尝试常见中文编码 | |
| for enc in ['gb18030', 'utf-16', 'big5']: | |
| try: | |
| text = content.decode(enc) | |
| break | |
| except: | |
| continue | |
| else: | |
| return "❌ 编码解析失败", "", "", "" | |
| # 直接调用process_text处理文本 | |
| return process_text(text, model_type) | |
| except Exception as e: | |
| logging.error(f"文件处理错误: {str(e)}") | |
| return f"❌ 文件处理错误: {str(e)}", "", "", "" | |
| # ======================== 模型评估与自动标注 ======================== | |
| def convert_telegram_json_to_eval_format(path): | |
| with open(path, encoding="utf-8") as f: | |
| data = json.load(f) | |
| if isinstance(data, dict) and "text" in data: | |
| return [{"text": data["text"], "entities": [ | |
| {"text": data["text"][e["start"]:e["end"]]} for e in data.get("entities", []) | |
| ]}] | |
| elif isinstance(data, list): | |
| return data | |
| elif isinstance(data, dict) and "messages" in data: | |
| result = [] | |
| for m in data.get("messages", []): | |
| if isinstance(m.get("text"), str): | |
| result.append({"text": m["text"], "entities": []}) | |
| elif isinstance(m.get("text"), list): | |
| txt = ''.join([x["text"] if isinstance(x, dict) else x for x in m["text"]]) | |
| result.append({"text": txt, "entities": []}) | |
| return result | |
| return [] | |
| def evaluate_ner_model(data, model_type): | |
| tp, fp, fn = 0, 0, 0 | |
| POS_TOLERANCE = 1 | |
| for item in data: | |
| text = item["text"] | |
| # 处理标注数据 | |
| gold_entities = [] | |
| for e in item.get("entities", []): | |
| if "text" in e and "type" in e: | |
| norm_type = LABEL_MAPPING.get(e["type"], e["type"]) | |
| gold_entities.append({ | |
| "text": e["text"], | |
| "type": norm_type, | |
| "start": e.get("start", -1), | |
| "end": e.get("end", -1) | |
| }) | |
| # 获取预测结果 | |
| pred_entities, _ = ner(text, model_type) | |
| # 初始化匹配状态 | |
| matched_gold = [False] * len(gold_entities) | |
| matched_pred = [False] * len(pred_entities) | |
| # 遍历预测实体寻找匹配 | |
| for p_idx, p in enumerate(pred_entities): | |
| for g_idx, g in enumerate(gold_entities): | |
| if not matched_gold[g_idx] and \ | |
| p["text"] == g["text"] and \ | |
| p["type"] == g["type"] and \ | |
| abs(p["start"] - g["start"]) <= POS_TOLERANCE and \ | |
| abs(p["end"] - g["end"]) <= POS_TOLERANCE: | |
| matched_gold[g_idx] = True | |
| matched_pred[p_idx] = True | |
| break | |
| # 统计指标 | |
| tp += sum(matched_pred) | |
| fp += len(pred_entities) - sum(matched_pred) | |
| fn += len(gold_entities) - sum(matched_gold) | |
| # 处理除零情况 | |
| precision = tp / (tp + fp) if (tp + fp) > 0 else 0 | |
| recall = tp / (tp + fn) if (tp + fn) > 0 else 0 | |
| f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0 | |
| return (f"Precision: {precision:.2f}\n" | |
| f"Recall: {recall:.2f}\n" | |
| f"F1: {f1:.2f}") | |
| def auto_annotate(file, model_type): | |
| data = convert_telegram_json_to_eval_format(file.name) | |
| for item in data: | |
| ents, _ = ner(item["text"], model_type) | |
| item["entities"] = ents | |
| return json.dumps(data, ensure_ascii=False, indent=2) | |
| def save_json(json_text): | |
| fname = f"auto_labeled_{int(time.time())}.json" | |
| with open(fname, "w", encoding="utf-8") as f: | |
| f.write(json_text) | |
| return fname | |
| # ======================== 数据集导入 ======================== | |
| def import_dataset(path="D:/云边智算/暗语识别/filtered_results"): | |
| import os | |
| import json | |
| for filename in os.listdir(path): | |
| if filename.endswith('.json'): | |
| filepath = os.path.join(path, filename) | |
| with open(filepath, 'r', encoding='utf-8') as f: | |
| data = json.load(f) | |
| # 调用现有处理流程 | |
| process_text(data['text']) | |
| print(f"已处理文件: {filename}") | |
| # ======================== Gradio 界面 ======================== | |
| with gr.Blocks(css=""" | |
| .kg-graph {height: 700px; overflow-y: auto;} | |
| .warning {color: #ff6b6b;} | |
| .error {color: #ff0000; padding: 10px; background-color: #ffeeee; border-radius: 5px;} | |
| """) as demo: | |
| gr.Markdown("# 🤖 聊天记录实体关系识别系统") | |
| with gr.Tab("📄 文本分析"): | |
| input_text = gr.Textbox(lines=6, label="输入文本") | |
| model_type = gr.Radio(["bert", "chatglm"], value="bert", label="选择模型") | |
| btn = gr.Button("开始分析") | |
| out1 = gr.Textbox(label="识别实体") | |
| out2 = gr.Textbox(label="识别关系") | |
| out3 = gr.Image(label="知识图谱") | |
| out4 = gr.Textbox(label="耗时") | |
| btn.click(fn=process_text, inputs=[input_text, model_type], outputs=[out1, out2, out3, out4]) | |
| with gr.Tab("🗂 文件分析"): | |
| file_input = gr.File(file_types=[".txt", ".json"]) | |
| file_btn = gr.Button("上传并分析") | |
| fout1, fout2, fout3, fout4 = gr.Textbox(), gr.Textbox(), gr.Textbox(), gr.Textbox() | |
| file_btn.click(fn=process_file, inputs=[file_input, model_type], outputs=[fout1, fout2, fout3, fout4]) | |
| with gr.Tab("📊 模型评估"): | |
| eval_file = gr.File(label="上传标注 JSON") | |
| eval_model = gr.Radio(["bert", "chatglm"], value="bert") | |
| eval_btn = gr.Button("开始评估") | |
| eval_output = gr.Textbox(label="评估结果", lines=5) | |
| eval_btn.click(lambda f, m: evaluate_ner_model(convert_telegram_json_to_eval_format(f.name), m), | |
| [eval_file, eval_model], eval_output) | |
| with gr.Tab("✏️ 自动标注"): | |
| raw_file = gr.File(label="上传 Telegram 原始 JSON") | |
| auto_model = gr.Radio(["bert", "chatglm"], value="bert") | |
| auto_btn = gr.Button("自动标注") | |
| marked_texts = gr.Textbox(label="标注结果", lines=20) | |
| download_btn = gr.Button("💾 下载标注文件") | |
| auto_btn.click(fn=auto_annotate, inputs=[raw_file, auto_model], outputs=marked_texts) | |
| download_btn.click(fn=save_json, inputs=marked_texts, outputs=gr.File()) | |
| with gr.Tab("📂 数据管理"): | |
| gr.Markdown("### 数据集导入") | |
| dataset_path = gr.Textbox( | |
| value="D:/云边智算/暗语识别/filtered_results", | |
| label="数据集路径" | |
| ) | |
| import_btn = gr.Button("导入数据集到数据库") | |
| import_output = gr.Textbox(label="导入日志") | |
| import_btn.click(fn=lambda: import_dataset(dataset_path.value), outputs=import_output) | |
| demo.launch(server_name="0.0.0.0", server_port=7860) |