Spaces:
Sleeping
Sleeping
Commit
·
d65f85e
1
Parent(s):
d5e2274
Add Gradio app for NER + RE
Browse files
app.py
CHANGED
|
@@ -1,31 +1,80 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
from transformers import BertTokenizer, BertModel
|
| 3 |
import gradio as gr
|
| 4 |
-
import
|
| 5 |
-
import
|
| 6 |
-
import json
|
| 7 |
-
import pandas as pd
|
| 8 |
-
import chardet
|
| 9 |
-
from pyvis.network import Network
|
| 10 |
-
import networkx as nx
|
| 11 |
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
#
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
model = BertModel.from_pretrained(model_name)
|
| 17 |
|
| 18 |
-
#
|
| 19 |
knowledge_graph = {
|
| 20 |
-
"entities":
|
| 21 |
"relations": []
|
| 22 |
}
|
| 23 |
|
| 24 |
-
def
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
def visualize_kg():
|
| 31 |
net = Network(height="600px", width="100%", notebook=True, directed=True)
|
|
@@ -52,159 +101,31 @@ def visualize_kg():
|
|
| 52 |
}
|
| 53 |
""")
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
return
|
| 61 |
-
|
| 62 |
-
#
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
"end": match.end(),
|
| 82 |
-
"type": "UserID"
|
| 83 |
-
})
|
| 84 |
-
|
| 85 |
-
return sorted(entities, key=lambda x: x["start"])
|
| 86 |
-
|
| 87 |
-
def re_extract(entities, text):
|
| 88 |
-
relations = []
|
| 89 |
-
if len(entities) >= 2:
|
| 90 |
-
for i in range(len(entities) - 1):
|
| 91 |
-
head = entities[i]["text"]
|
| 92 |
-
tail = entities[i + 1]["text"]
|
| 93 |
-
context = text[entities[i]["end"]:entities[i + 1]["start"]]
|
| 94 |
-
if "推荐" in context or "找" in context:
|
| 95 |
-
relation = "recommend"
|
| 96 |
-
elif "发送" in context or "发给" in context:
|
| 97 |
-
relation = "send_to"
|
| 98 |
-
elif "提到" in context or "说" in context:
|
| 99 |
-
relation = "mention"
|
| 100 |
-
else:
|
| 101 |
-
relation = "knows"
|
| 102 |
-
relations.append({
|
| 103 |
-
"head": head,
|
| 104 |
-
"tail": tail,
|
| 105 |
-
"relation": relation
|
| 106 |
-
})
|
| 107 |
-
return relations
|
| 108 |
-
|
| 109 |
-
# ----------- 文本处理逻辑 -----------------
|
| 110 |
-
def process_text(text):
|
| 111 |
-
entities = ner(text)
|
| 112 |
-
relations = re_extract(entities, text)
|
| 113 |
-
update_knowledge_graph(entities, relations)
|
| 114 |
-
kg_html = visualize_kg()
|
| 115 |
-
entity_output = "\n".join([f"{e['text']} ({e['type']}) [{e['start']}, {e['end']}]" for e in entities])
|
| 116 |
-
relation_output = "\n".join([f"{r['head']} --[{r['relation']}]-> {r['tail']}" for r in relations])
|
| 117 |
-
return entity_output, relation_output, kg_html
|
| 118 |
-
|
| 119 |
-
# ----------- 文件上传处理逻辑 -----------------
|
| 120 |
-
def detect_encoding(file_path):
|
| 121 |
-
with open(file_path, 'rb') as f:
|
| 122 |
-
raw_data = f.read(4096)
|
| 123 |
-
result = chardet.detect(raw_data)
|
| 124 |
-
return result['encoding'] if result['encoding'] else 'utf-8'
|
| 125 |
-
|
| 126 |
-
def process_file(file):
|
| 127 |
-
ext = os.path.splitext(file.name)[-1].lower()
|
| 128 |
-
full_text = ""
|
| 129 |
-
warning = ""
|
| 130 |
-
|
| 131 |
-
try:
|
| 132 |
-
encoding = detect_encoding(file.name)
|
| 133 |
-
|
| 134 |
-
if ext == ".txt":
|
| 135 |
-
with open(file.name, "r", encoding=encoding) as f:
|
| 136 |
-
full_text = f.read()
|
| 137 |
-
|
| 138 |
-
elif ext == ".jsonl":
|
| 139 |
-
with open(file.name, "r", encoding=encoding) as f:
|
| 140 |
-
lines = f.readlines()
|
| 141 |
-
texts = []
|
| 142 |
-
skipped_lines = []
|
| 143 |
-
for i, line in enumerate(lines, start=1):
|
| 144 |
-
try:
|
| 145 |
-
obj = json.loads(line)
|
| 146 |
-
texts.append(obj.get("text", ""))
|
| 147 |
-
except Exception:
|
| 148 |
-
skipped_lines.append(i)
|
| 149 |
-
full_text = "\n".join(texts)
|
| 150 |
-
if skipped_lines:
|
| 151 |
-
warning = f"⚠️ 跳过 {len(skipped_lines)} 行无效 JSON(如第 {skipped_lines[0]} 行)\n\n"
|
| 152 |
-
|
| 153 |
-
elif ext == ".json":
|
| 154 |
-
with open(file.name, "r", encoding=encoding) as f:
|
| 155 |
-
data = json.load(f)
|
| 156 |
-
if isinstance(data, list):
|
| 157 |
-
full_text = "\n".join([str(item.get("text", "")) for item in data])
|
| 158 |
-
elif isinstance(data, dict):
|
| 159 |
-
full_text = data.get("text", "")
|
| 160 |
-
else:
|
| 161 |
-
return "❌ JSON 文件格式无法解析", "", ""
|
| 162 |
-
|
| 163 |
-
elif ext == ".csv":
|
| 164 |
-
df = pd.read_csv(file.name, encoding=encoding)
|
| 165 |
-
if "text" in df.columns:
|
| 166 |
-
full_text = "\n".join(df["text"].astype(str))
|
| 167 |
-
else:
|
| 168 |
-
return "❌ CSV 中未找到 'text' 列", "", ""
|
| 169 |
-
|
| 170 |
-
else:
|
| 171 |
-
return f"❌ 不支持的文件格式:{ext}", "", ""
|
| 172 |
-
|
| 173 |
-
except Exception as e:
|
| 174 |
-
return f"❌ 文件读取错误:{str(e)}", "", ""
|
| 175 |
-
|
| 176 |
-
entity_out, relation_out, kg_html = process_text(full_text)
|
| 177 |
-
return warning + entity_out, relation_out, kg_html
|
| 178 |
-
|
| 179 |
-
# ----------- Gradio UI -----------------
|
| 180 |
-
with gr.Blocks() as demo:
|
| 181 |
-
gr.Markdown("""# 📱 微信聊天记录分析系统
|
| 182 |
-
功能包括:实体识别(NER)、关系抽取(RE)和知识图谱可视化""")
|
| 183 |
-
|
| 184 |
-
with gr.Tab("✍️ 直接输入文本"):
|
| 185 |
-
with gr.Row():
|
| 186 |
-
input_text = gr.Textbox(label="输入聊天内容", lines=8, placeholder="请输入中文微信聊天记录")
|
| 187 |
-
analyze_btn = gr.Button("分析文本")
|
| 188 |
-
with gr.Row():
|
| 189 |
-
entity_output1 = gr.Textbox(label="识别出的实体")
|
| 190 |
-
relation_output1 = gr.Textbox(label="抽取的关系")
|
| 191 |
-
kg_html1 = gr.HTML(label="知识图谱可视化")
|
| 192 |
-
analyze_btn.click(fn=process_text, inputs=[input_text], outputs=[entity_output1, relation_output1, kg_html1])
|
| 193 |
-
|
| 194 |
-
with gr.Tab("📁 上传文件"):
|
| 195 |
-
file_input = gr.File(label="上传聊天记录文件", file_types=[".txt", ".jsonl", ".json", ".csv"])
|
| 196 |
-
analyze_file_btn = gr.Button("分析文件")
|
| 197 |
-
with gr.Row():
|
| 198 |
-
entity_output2 = gr.Textbox(label="识别出的实体")
|
| 199 |
-
relation_output2 = gr.Textbox(label="抽取的关系")
|
| 200 |
-
kg_html2 = gr.HTML(label="知识图谱可视化")
|
| 201 |
-
analyze_file_btn.click(fn=process_file, inputs=[file_input], outputs=[entity_output2, relation_output2, kg_html2])
|
| 202 |
-
|
| 203 |
-
with gr.Tab("🗺️ 完整知识图谱"):
|
| 204 |
-
gr.Markdown("## 当前累计构建的知识图谱")
|
| 205 |
-
refresh_btn = gr.Button("刷新图谱")
|
| 206 |
-
full_kg = gr.HTML()
|
| 207 |
-
refresh_btn.click(fn=lambda: visualize_kg(), outputs=full_kg)
|
| 208 |
-
|
| 209 |
if __name__ == "__main__":
|
| 210 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import BertTokenizerFast, BertForTokenClassification, BertForSequenceClassification
|
| 3 |
+
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from pathlib import Path
|
| 5 |
+
from pyvis.network import Network
|
| 6 |
+
|
| 7 |
+
# 加载模型和分词器
|
| 8 |
+
ner_tokenizer = BertTokenizerFast.from_pretrained("bert-base-chinese")
|
| 9 |
+
ner_model = BertForTokenClassification.from_pretrained("bert-base-chinese", num_labels=10)
|
| 10 |
+
|
| 11 |
+
re_model = BertForSequenceClassification.from_pretrained("bert-base-chinese", num_labels=5)
|
| 12 |
+
re_tokenizer = BertTokenizerFast.from_pretrained("bert-base-chinese")
|
| 13 |
|
| 14 |
+
# 定义标签和关系类型
|
| 15 |
+
label_list = ["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", "B-MISC", "I-MISC", "PAD"]
|
| 16 |
+
relation_list = ["no_relation", "per-org", "per-loc", "org-loc", "org-misc"]
|
|
|
|
| 17 |
|
| 18 |
+
# 用于存储知识图谱
|
| 19 |
knowledge_graph = {
|
| 20 |
+
"entities": [],
|
| 21 |
"relations": []
|
| 22 |
}
|
| 23 |
|
| 24 |
+
def ner_predict(text):
|
| 25 |
+
inputs = ner_tokenizer(text, return_tensors="pt", truncation=True)
|
| 26 |
+
with torch.no_grad():
|
| 27 |
+
outputs = ner_model(**inputs).logits
|
| 28 |
+
predictions = torch.argmax(outputs, dim=2)
|
| 29 |
+
tokens = ner_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
|
| 30 |
+
predicted_labels = [label_list[label_id] for label_id in predictions[0].numpy()]
|
| 31 |
+
entities = []
|
| 32 |
+
current_entity = ""
|
| 33 |
+
current_label = ""
|
| 34 |
+
start = None
|
| 35 |
+
for idx, (token, label) in enumerate(zip(tokens, predicted_labels)):
|
| 36 |
+
if label.startswith("B-"):
|
| 37 |
+
if current_entity:
|
| 38 |
+
entities.append((current_entity, current_label, start, idx))
|
| 39 |
+
current_entity = token.replace("##", "")
|
| 40 |
+
current_label = label[2:]
|
| 41 |
+
start = idx
|
| 42 |
+
elif label.startswith("I-") and current_label == label[2:]:
|
| 43 |
+
current_entity += token.replace("##", "")
|
| 44 |
+
else:
|
| 45 |
+
if current_entity:
|
| 46 |
+
entities.append((current_entity, current_label, start, idx))
|
| 47 |
+
current_entity = ""
|
| 48 |
+
current_label = ""
|
| 49 |
+
if current_entity:
|
| 50 |
+
entities.append((current_entity, current_label, start, len(tokens)))
|
| 51 |
+
return entities
|
| 52 |
+
|
| 53 |
+
def re_predict(text, entities):
|
| 54 |
+
relations = []
|
| 55 |
+
for i in range(len(entities)):
|
| 56 |
+
for j in range(len(entities)):
|
| 57 |
+
if i == j:
|
| 58 |
+
continue
|
| 59 |
+
head, tail = entities[i][0], entities[j][0]
|
| 60 |
+
input_text = f"{head} 和 {tail} 有什么关系?{text}"
|
| 61 |
+
inputs = re_tokenizer(input_text, return_tensors="pt", truncation=True, padding=True)
|
| 62 |
+
with torch.no_grad():
|
| 63 |
+
outputs = re_model(**inputs).logits
|
| 64 |
+
prediction = torch.argmax(outputs, dim=1).item()
|
| 65 |
+
if relation_list[prediction] != "no_relation":
|
| 66 |
+
relations.append((head, tail, relation_list[prediction]))
|
| 67 |
+
return relations
|
| 68 |
+
|
| 69 |
+
def analyze_text(text):
|
| 70 |
+
entities = ner_predict(text)
|
| 71 |
+
relations = re_predict(text, entities)
|
| 72 |
+
entity_list = [f"{ent[0]} ({ent[1]}) [{ent[2]}, {ent[3]}]" for ent in entities]
|
| 73 |
+
relation_list_text = [f"{rel[0]} --[{rel[2]}]-> {rel[1]}" for rel in relations]
|
| 74 |
+
# 更新全局知识图谱
|
| 75 |
+
knowledge_graph["entities"] = [(ent[0], ent[1]) for ent in entities]
|
| 76 |
+
knowledge_graph["relations"] = relations
|
| 77 |
+
return "\n".join(entity_list), "\n".join(relation_list_text)
|
| 78 |
|
| 79 |
def visualize_kg():
|
| 80 |
net = Network(height="600px", width="100%", notebook=True, directed=True)
|
|
|
|
| 101 |
}
|
| 102 |
""")
|
| 103 |
|
| 104 |
+
# 保存 HTML 到 Hugging Face Spaces 可访问路径
|
| 105 |
+
file_path = "/home/user/kg.html"
|
| 106 |
+
net.save_graph(file_path)
|
| 107 |
+
|
| 108 |
+
# 返回 iframe HTML
|
| 109 |
+
return f'<iframe src="/file=kg.html" width="100%" height="600px" frameborder="0"></iframe>'
|
| 110 |
+
|
| 111 |
+
# 搭建 Gradio 界面
|
| 112 |
+
with gr.Blocks(title="Wechat Ner Re") as demo:
|
| 113 |
+
gr.Markdown("## 微信聊天记录结构化系统(NER + RE + 知识图谱)")
|
| 114 |
+
with gr.Row():
|
| 115 |
+
input_text = gr.Textbox(lines=5, label="请输入文本")
|
| 116 |
+
analyze_button = gr.Button("分析文本")
|
| 117 |
+
with gr.Row():
|
| 118 |
+
ner_output = gr.Textbox(label="识别出的实体")
|
| 119 |
+
re_output = gr.Textbox(label="抽取的关系")
|
| 120 |
+
analyze_button.click(analyze_text, inputs=input_text, outputs=[ner_output, re_output])
|
| 121 |
+
|
| 122 |
+
# 显示知识图谱
|
| 123 |
+
gr.Markdown("## 知识图谱可视化")
|
| 124 |
+
with gr.Row():
|
| 125 |
+
kg_button = gr.Button("生成知识图谱")
|
| 126 |
+
kg_html1 = gr.HTML(label="知识图谱可视化", show_label=True)
|
| 127 |
+
kg_button.click(fn=visualize_kg, outputs=kg_html1)
|
| 128 |
+
|
| 129 |
+
# 启动应用
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
if __name__ == "__main__":
|
| 131 |
demo.launch()
|