Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2021 Google AI and HuggingFace Inc. team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import json | |
| import os | |
| import shutil | |
| import tempfile | |
| import unittest | |
| from transformers import BatchEncoding, CanineTokenizer | |
| from transformers.testing_utils import require_tokenizers, require_torch | |
| from transformers.tokenization_utils import AddedToken | |
| from transformers.utils import cached_property | |
| from ...test_tokenization_common import TokenizerTesterMixin | |
| class CanineTokenizationTest(TokenizerTesterMixin, unittest.TestCase): | |
| tokenizer_class = CanineTokenizer | |
| test_rust_tokenizer = False | |
| def setUp(self): | |
| super().setUp() | |
| tokenizer = CanineTokenizer() | |
| tokenizer.save_pretrained(self.tmpdirname) | |
| def canine_tokenizer(self): | |
| return CanineTokenizer.from_pretrained("google/canine-s") | |
| def get_tokenizer(self, **kwargs) -> CanineTokenizer: | |
| tokenizer = self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) | |
| tokenizer._unicode_vocab_size = 1024 | |
| return tokenizer | |
| def test_prepare_batch_integration(self): | |
| tokenizer = self.canine_tokenizer | |
| src_text = ["Life is like a box of chocolates.", "You never know what you're gonna get."] | |
| # fmt: off | |
| expected_src_tokens = [57344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 57345, 0, 0, 0, 0] | |
| # fmt: on | |
| batch = tokenizer(src_text, padding=True, return_tensors="pt") | |
| self.assertIsInstance(batch, BatchEncoding) | |
| result = list(batch.input_ids.numpy()[0]) | |
| self.assertListEqual(expected_src_tokens, result) | |
| self.assertEqual((2, 39), batch.input_ids.shape) | |
| self.assertEqual((2, 39), batch.attention_mask.shape) | |
| def test_encoding_keys(self): | |
| tokenizer = self.canine_tokenizer | |
| src_text = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] | |
| batch = tokenizer(src_text, padding=True, return_tensors="pt") | |
| # check if input_ids, attention_mask and token_type_ids are returned | |
| self.assertIn("input_ids", batch) | |
| self.assertIn("attention_mask", batch) | |
| self.assertIn("token_type_ids", batch) | |
| def test_max_length_integration(self): | |
| tokenizer = self.canine_tokenizer | |
| tgt_text = [ | |
| "What's the weater?", | |
| "It's about 25 degrees.", | |
| ] | |
| targets = tokenizer( | |
| text_target=tgt_text, max_length=32, padding="max_length", truncation=True, return_tensors="pt" | |
| ) | |
| self.assertEqual(32, targets["input_ids"].shape[1]) | |
| # cannot use default save_and_load_tokenzier test method because tokenzier has no vocab | |
| def test_save_and_load_tokenizer(self): | |
| # safety check on max_len default value so we are sure the test works | |
| tokenizers = self.get_tokenizers() | |
| for tokenizer in tokenizers: | |
| with self.subTest(f"{tokenizer.__class__.__name__}"): | |
| self.assertNotEqual(tokenizer.model_max_length, 42) | |
| # Now let's start the test | |
| tokenizers = self.get_tokenizers() | |
| for tokenizer in tokenizers: | |
| with self.subTest(f"{tokenizer.__class__.__name__}"): | |
| # Isolate this from the other tests because we save additional tokens/etc | |
| tmpdirname = tempfile.mkdtemp() | |
| sample_text = " He is very happy, UNwant\u00E9d,running" | |
| before_tokens = tokenizer.encode(sample_text, add_special_tokens=False) | |
| tokenizer.save_pretrained(tmpdirname) | |
| after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname) | |
| after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False) | |
| self.assertListEqual(before_tokens, after_tokens) | |
| shutil.rmtree(tmpdirname) | |
| tokenizers = self.get_tokenizers(model_max_length=42) | |
| for tokenizer in tokenizers: | |
| with self.subTest(f"{tokenizer.__class__.__name__}"): | |
| # Isolate this from the other tests because we save additional tokens/etc | |
| tmpdirname = tempfile.mkdtemp() | |
| sample_text = " He is very happy, UNwant\u00E9d,running" | |
| additional_special_tokens = tokenizer.additional_special_tokens | |
| # We can add a new special token for Canine as follows: | |
| new_additional_special_token = chr(0xE007) | |
| additional_special_tokens.append(new_additional_special_token) | |
| tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens}) | |
| before_tokens = tokenizer.encode(sample_text, add_special_tokens=False) | |
| tokenizer.save_pretrained(tmpdirname) | |
| after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname) | |
| after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False) | |
| self.assertListEqual(before_tokens, after_tokens) | |
| self.assertIn(new_additional_special_token, after_tokenizer.additional_special_tokens) | |
| self.assertEqual(after_tokenizer.model_max_length, 42) | |
| tokenizer = tokenizer.__class__.from_pretrained(tmpdirname, model_max_length=43) | |
| self.assertEqual(tokenizer.model_max_length, 43) | |
| shutil.rmtree(tmpdirname) | |
| def test_add_special_tokens(self): | |
| tokenizers = self.get_tokenizers(do_lower_case=False) | |
| for tokenizer in tokenizers: | |
| with self.subTest(f"{tokenizer.__class__.__name__}"): | |
| input_text, ids = self.get_clean_sequence(tokenizer) | |
| # a special token for Canine can be defined as follows: | |
| SPECIAL_TOKEN = 0xE005 | |
| special_token = chr(SPECIAL_TOKEN) | |
| tokenizer.add_special_tokens({"cls_token": special_token}) | |
| encoded_special_token = tokenizer.encode(special_token, add_special_tokens=False) | |
| self.assertEqual(len(encoded_special_token), 1) | |
| text = tokenizer.decode(ids + encoded_special_token, clean_up_tokenization_spaces=False) | |
| encoded = tokenizer.encode(text, add_special_tokens=False) | |
| input_encoded = tokenizer.encode(input_text, add_special_tokens=False) | |
| special_token_id = tokenizer.encode(special_token, add_special_tokens=False) | |
| self.assertEqual(encoded, input_encoded + special_token_id) | |
| decoded = tokenizer.decode(encoded, skip_special_tokens=True) | |
| self.assertTrue(special_token not in decoded) | |
| def test_tokenize_special_tokens(self): | |
| tokenizers = self.get_tokenizers(do_lower_case=True) | |
| for tokenizer in tokenizers: | |
| with self.subTest(f"{tokenizer.__class__.__name__}"): | |
| SPECIAL_TOKEN_1 = chr(0xE005) | |
| SPECIAL_TOKEN_2 = chr(0xE006) | |
| # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) | |
| tokenizer.add_tokens([SPECIAL_TOKEN_1], special_tokens=True) | |
| # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, | |
| # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) | |
| tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]}) | |
| token_1 = tokenizer.tokenize(SPECIAL_TOKEN_1) | |
| token_2 = tokenizer.tokenize(SPECIAL_TOKEN_2) | |
| self.assertEqual(len(token_1), 1) | |
| self.assertEqual(len(token_2), 1) | |
| self.assertEqual(token_1[0], SPECIAL_TOKEN_1) | |
| self.assertEqual(token_2[0], SPECIAL_TOKEN_2) | |
| def test_added_token_serializable(self): | |
| tokenizers = self.get_tokenizers(do_lower_case=False) | |
| for tokenizer in tokenizers: | |
| with self.subTest(f"{tokenizer.__class__.__name__}"): | |
| # a special token for Canine can be defined as follows: | |
| NEW_TOKEN = 0xE006 | |
| new_token = chr(NEW_TOKEN) | |
| new_token = AddedToken(new_token, lstrip=True) | |
| tokenizer.add_special_tokens({"additional_special_tokens": [new_token]}) | |
| with tempfile.TemporaryDirectory() as tmp_dir_name: | |
| tokenizer.save_pretrained(tmp_dir_name) | |
| tokenizer.from_pretrained(tmp_dir_name) | |
| def test_special_tokens_initialization_with_non_empty_additional_special_tokens(self): | |
| tokenizer_list = [] | |
| if self.test_slow_tokenizer: | |
| tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) | |
| if self.test_rust_tokenizer: | |
| tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) | |
| for tokenizer_class, tokenizer_utils in tokenizer_list: | |
| with tempfile.TemporaryDirectory() as tmp_dir: | |
| tokenizer_utils.save_pretrained(tmp_dir) | |
| with open(os.path.join(tmp_dir, "special_tokens_map.json"), encoding="utf-8") as json_file: | |
| special_tokens_map = json.load(json_file) | |
| with open(os.path.join(tmp_dir, "tokenizer_config.json"), encoding="utf-8") as json_file: | |
| tokenizer_config = json.load(json_file) | |
| # a special token for Canine can be defined as follows: | |
| NEW_TOKEN = 0xE006 | |
| new_token_1 = chr(NEW_TOKEN) | |
| special_tokens_map["additional_special_tokens"] = [new_token_1] | |
| tokenizer_config["additional_special_tokens"] = [new_token_1] | |
| with open(os.path.join(tmp_dir, "special_tokens_map.json"), "w", encoding="utf-8") as outfile: | |
| json.dump(special_tokens_map, outfile) | |
| with open(os.path.join(tmp_dir, "tokenizer_config.json"), "w", encoding="utf-8") as outfile: | |
| json.dump(tokenizer_config, outfile) | |
| # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes | |
| # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and | |
| # "special_tokens_map.json" files | |
| tokenizer_without_change_in_init = tokenizer_class.from_pretrained(tmp_dir, extra_ids=0) | |
| self.assertIn(new_token_1, tokenizer_without_change_in_init.additional_special_tokens) | |
| # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab | |
| self.assertEqual( | |
| [new_token_1], | |
| tokenizer_without_change_in_init.convert_ids_to_tokens( | |
| tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_1]) | |
| ), | |
| ) | |
| NEW_TOKEN = 0xE007 | |
| new_token_2 = chr(NEW_TOKEN) | |
| # Now we test that we can change the value of additional_special_tokens in the from_pretrained | |
| new_added_tokens = [AddedToken(new_token_2, lstrip=True)] | |
| tokenizer = tokenizer_class.from_pretrained( | |
| tmp_dir, additional_special_tokens=new_added_tokens, extra_ids=0 | |
| ) | |
| self.assertIn(new_token_2, tokenizer.additional_special_tokens) | |
| # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab | |
| self.assertEqual( | |
| [new_token_2], tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_2])) | |
| ) | |
| def test_encode_decode_with_spaces(self): | |
| tokenizers = self.get_tokenizers(do_lower_case=False) | |
| for tokenizer in tokenizers: | |
| with self.subTest(f"{tokenizer.__class__.__name__}"): | |
| input = "hello world" | |
| if self.space_between_special_tokens: | |
| output = "[CLS] hello world [SEP]" | |
| else: | |
| output = input | |
| encoded = tokenizer.encode(input, add_special_tokens=False) | |
| decoded = tokenizer.decode(encoded, spaces_between_special_tokens=self.space_between_special_tokens) | |
| self.assertIn(decoded, [output, output.lower()]) | |
| # cannot use default `test_tokenizers_common_ids_setters` method because tokenizer has no vocab | |
| def test_tokenizers_common_ids_setters(self): | |
| tokenizers = self.get_tokenizers() | |
| for tokenizer in tokenizers: | |
| with self.subTest(f"{tokenizer.__class__.__name__}"): | |
| attributes_list = [ | |
| "bos_token", | |
| "eos_token", | |
| "unk_token", | |
| "sep_token", | |
| "pad_token", | |
| "cls_token", | |
| "mask_token", | |
| ] | |
| token_to_test_setters = "a" | |
| token_id_to_test_setters = ord(token_to_test_setters) | |
| for attr in attributes_list: | |
| setattr(tokenizer, attr + "_id", None) | |
| self.assertEqual(getattr(tokenizer, attr), None) | |
| self.assertEqual(getattr(tokenizer, attr + "_id"), None) | |
| setattr(tokenizer, attr + "_id", token_id_to_test_setters) | |
| self.assertEqual(getattr(tokenizer, attr), token_to_test_setters) | |
| self.assertEqual(getattr(tokenizer, attr + "_id"), token_id_to_test_setters) | |
| setattr(tokenizer, "additional_special_tokens_ids", []) | |
| self.assertListEqual(getattr(tokenizer, "additional_special_tokens"), []) | |
| self.assertListEqual(getattr(tokenizer, "additional_special_tokens_ids"), []) | |
| additional_special_token_id = 0xE006 | |
| additional_special_token = chr(additional_special_token_id) | |
| setattr(tokenizer, "additional_special_tokens_ids", [additional_special_token_id]) | |
| self.assertListEqual(getattr(tokenizer, "additional_special_tokens"), [additional_special_token]) | |
| self.assertListEqual(getattr(tokenizer, "additional_special_tokens_ids"), [additional_special_token_id]) | |
| # tokenizer has a fixed vocab_size (namely all possible unicode code points) | |
| def test_add_tokens_tokenizer(self): | |
| pass | |
| # CanineTokenizer does not support do_lower_case = True, as each character has its own Unicode code point | |
| # ("b" and "B" for example have different Unicode code points) | |
| def test_added_tokens_do_lower_case(self): | |
| pass | |
| # CanineModel does not support the get_input_embeddings nor the get_vocab method | |
| def test_np_encode_plus_sent_to_model(self): | |
| pass | |
| # CanineModel does not support the get_input_embeddings nor the get_vocab method | |
| def test_torch_encode_plus_sent_to_model(self): | |
| pass | |
| # tokenizer can be instantiated without any pretrained files, so no need for pretrained tokenizer list | |
| def test_pretrained_model_lists(self): | |
| pass | |
| # tokenizer does not have vocabulary | |
| def test_get_vocab(self): | |
| pass | |
| # inputs cannot be pretokenized since ids depend on whole input string and not just on single characters | |
| def test_pretokenized_inputs(self): | |
| pass | |
| # tests all ids in vocab => vocab doesn't exist so unnecessary to test | |
| def test_conversion_reversible(self): | |
| pass | |