Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import torch | |
| from torch import nn | |
| from torch.nn import init | |
| class SEAttention(nn.Module): | |
| def __init__(self, channel=512,reduction=16): | |
| super().__init__() | |
| self.fc = nn.Sequential( | |
| nn.Linear(channel, channel // reduction, bias=False), | |
| nn.GELU(), | |
| nn.Linear(channel // reduction, channel, bias=False), | |
| nn.GELU(), | |
| nn.Linear(channel, 1, bias=False), | |
| nn.Sigmoid() | |
| ) | |
| def init_weights(self): | |
| for m in self.modules(): | |
| if isinstance(m, nn.Conv2d): | |
| init.kaiming_normal_(m.weight, mode='fan_out') | |
| if m.bias is not None: | |
| init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.BatchNorm2d): | |
| init.constant_(m.weight, 1) | |
| init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.Linear): | |
| init.normal_(m.weight, std=0.001) | |
| if m.bias is not None: | |
| init.constant_(m.bias, 0) | |
| def forward(self, x): | |
| x = self.fc(x) | |
| return x | |
| if __name__ == '__main__': | |
| input=torch.randn(50,512,7,7) | |
| se = SEAttention(channel=512,reduction=8) | |
| output=se(input) | |
| print(output.shape) | |