Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2022 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Testing suite for the PyTorch Blip model. """ | |
| import inspect | |
| import os | |
| import tempfile | |
| import unittest | |
| import numpy as np | |
| import requests | |
| from transformers import BlipConfig, BlipTextConfig, BlipVisionConfig | |
| from transformers.testing_utils import require_torch, require_torch_gpu, require_vision, slow, torch_device | |
| from transformers.utils import is_torch_available, is_vision_available | |
| from ...test_configuration_common import ConfigTester | |
| from ...test_modeling_common import ( | |
| ModelTesterMixin, | |
| _config_zero_init, | |
| floats_tensor, | |
| ids_tensor, | |
| random_attention_mask, | |
| ) | |
| from ...test_pipeline_mixin import PipelineTesterMixin | |
| if is_torch_available(): | |
| import torch | |
| from torch import nn | |
| from transformers import ( | |
| BlipForConditionalGeneration, | |
| BlipForImageTextRetrieval, | |
| BlipForQuestionAnswering, | |
| BlipModel, | |
| BlipTextModel, | |
| BlipVisionModel, | |
| ) | |
| from transformers.models.blip.modeling_blip import BLIP_PRETRAINED_MODEL_ARCHIVE_LIST | |
| if is_vision_available(): | |
| from PIL import Image | |
| from transformers import BlipProcessor | |
| class BlipVisionModelTester: | |
| def __init__( | |
| self, | |
| parent, | |
| batch_size=12, | |
| image_size=30, | |
| patch_size=2, | |
| num_channels=3, | |
| is_training=True, | |
| hidden_size=32, | |
| projection_dim=32, | |
| num_hidden_layers=5, | |
| num_attention_heads=4, | |
| intermediate_size=37, | |
| dropout=0.1, | |
| attention_dropout=0.1, | |
| initializer_range=1e-10, | |
| scope=None, | |
| ): | |
| self.parent = parent | |
| self.batch_size = batch_size | |
| self.image_size = image_size | |
| self.patch_size = patch_size | |
| self.num_channels = num_channels | |
| self.is_training = is_training | |
| self.hidden_size = hidden_size | |
| self.projection_dim = projection_dim | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.intermediate_size = intermediate_size | |
| self.dropout = dropout | |
| self.attention_dropout = attention_dropout | |
| self.initializer_range = initializer_range | |
| self.scope = scope | |
| # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) | |
| num_patches = (image_size // patch_size) ** 2 | |
| self.seq_length = num_patches + 1 | |
| def prepare_config_and_inputs(self): | |
| pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) | |
| config = self.get_config() | |
| return config, pixel_values | |
| def get_config(self): | |
| return BlipVisionConfig( | |
| image_size=self.image_size, | |
| patch_size=self.patch_size, | |
| num_channels=self.num_channels, | |
| hidden_size=self.hidden_size, | |
| projection_dim=self.projection_dim, | |
| num_hidden_layers=self.num_hidden_layers, | |
| num_attention_heads=self.num_attention_heads, | |
| intermediate_size=self.intermediate_size, | |
| dropout=self.dropout, | |
| attention_dropout=self.attention_dropout, | |
| initializer_range=self.initializer_range, | |
| ) | |
| def create_and_check_model(self, config, pixel_values): | |
| model = BlipVisionModel(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| result = model(pixel_values) | |
| # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) | |
| image_size = (self.image_size, self.image_size) | |
| patch_size = (self.patch_size, self.patch_size) | |
| num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) | |
| self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size)) | |
| self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| config, pixel_values = config_and_inputs | |
| inputs_dict = {"pixel_values": pixel_values} | |
| return config, inputs_dict | |
| class BlipVisionModelTest(ModelTesterMixin, unittest.TestCase): | |
| """ | |
| Here we also overwrite some of the tests of test_modeling_common.py, as Blip does not use input_ids, inputs_embeds, | |
| attention_mask and seq_length. | |
| """ | |
| all_model_classes = (BlipVisionModel,) if is_torch_available() else () | |
| fx_compatible = False | |
| test_pruning = False | |
| test_resize_embeddings = False | |
| test_head_masking = False | |
| def setUp(self): | |
| self.model_tester = BlipVisionModelTester(self) | |
| self.config_tester = ConfigTester(self, config_class=BlipVisionConfig, has_text_modality=False, hidden_size=37) | |
| def test_config(self): | |
| self.config_tester.run_common_tests() | |
| def test_inputs_embeds(self): | |
| pass | |
| def test_model_common_attributes(self): | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) | |
| x = model.get_output_embeddings() | |
| self.assertTrue(x is None or isinstance(x, nn.Linear)) | |
| def test_forward_signature(self): | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| signature = inspect.signature(model.forward) | |
| # signature.parameters is an OrderedDict => so arg_names order is deterministic | |
| arg_names = [*signature.parameters.keys()] | |
| expected_arg_names = ["pixel_values"] | |
| self.assertListEqual(arg_names[:1], expected_arg_names) | |
| def test_model(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_model(*config_and_inputs) | |
| def test_training(self): | |
| pass | |
| def test_training_gradient_checkpointing(self): | |
| pass | |
| def test_save_load_fast_init_from_base(self): | |
| pass | |
| def test_save_load_fast_init_to_base(self): | |
| pass | |
| def test_model_from_pretrained(self): | |
| for model_name in BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
| model = BlipVisionModel.from_pretrained(model_name) | |
| self.assertIsNotNone(model) | |
| class BlipTextModelTester: | |
| def __init__( | |
| self, | |
| parent, | |
| batch_size=12, | |
| seq_length=7, | |
| is_training=True, | |
| use_input_mask=True, | |
| use_labels=True, | |
| vocab_size=99, | |
| hidden_size=32, | |
| projection_dim=32, | |
| num_hidden_layers=5, | |
| num_attention_heads=4, | |
| intermediate_size=37, | |
| dropout=0.1, | |
| attention_dropout=0.1, | |
| max_position_embeddings=512, | |
| initializer_range=0.02, | |
| bos_token_id=0, | |
| scope=None, | |
| ): | |
| self.parent = parent | |
| self.batch_size = batch_size | |
| self.seq_length = seq_length | |
| self.is_training = is_training | |
| self.use_input_mask = use_input_mask | |
| self.use_labels = use_labels | |
| self.vocab_size = vocab_size | |
| self.hidden_size = hidden_size | |
| self.projection_dim = projection_dim | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.intermediate_size = intermediate_size | |
| self.dropout = dropout | |
| self.attention_dropout = attention_dropout | |
| self.max_position_embeddings = max_position_embeddings | |
| self.initializer_range = initializer_range | |
| self.scope = scope | |
| self.bos_token_id = bos_token_id | |
| def prepare_config_and_inputs(self): | |
| input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
| input_mask = None | |
| if self.use_input_mask: | |
| input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
| if input_mask is not None: | |
| batch_size, seq_length = input_mask.shape | |
| rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) | |
| for batch_idx, start_index in enumerate(rnd_start_indices): | |
| input_mask[batch_idx, :start_index] = 1 | |
| input_mask[batch_idx, start_index:] = 0 | |
| config = self.get_config() | |
| return config, input_ids, input_mask | |
| def get_config(self): | |
| return BlipTextConfig( | |
| vocab_size=self.vocab_size, | |
| hidden_size=self.hidden_size, | |
| projection_dim=self.projection_dim, | |
| num_hidden_layers=self.num_hidden_layers, | |
| num_attention_heads=self.num_attention_heads, | |
| intermediate_size=self.intermediate_size, | |
| dropout=self.dropout, | |
| attention_dropout=self.attention_dropout, | |
| max_position_embeddings=self.max_position_embeddings, | |
| initializer_range=self.initializer_range, | |
| bos_token_id=self.bos_token_id, | |
| ) | |
| def create_and_check_model(self, config, input_ids, input_mask): | |
| model = BlipTextModel(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| result = model(input_ids, attention_mask=input_mask) | |
| result = model(input_ids) | |
| self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
| self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| config, input_ids, input_mask = config_and_inputs | |
| inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} | |
| return config, inputs_dict | |
| class BlipTextModelTest(ModelTesterMixin, unittest.TestCase): | |
| all_model_classes = (BlipTextModel,) if is_torch_available() else () | |
| fx_compatible = False | |
| test_pruning = False | |
| test_head_masking = False | |
| def setUp(self): | |
| self.model_tester = BlipTextModelTester(self) | |
| self.config_tester = ConfigTester(self, config_class=BlipTextConfig, hidden_size=37) | |
| def test_config(self): | |
| self.config_tester.run_common_tests() | |
| def test_model(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_model(*config_and_inputs) | |
| def test_training(self): | |
| pass | |
| def test_training_gradient_checkpointing(self): | |
| pass | |
| def test_inputs_embeds(self): | |
| pass | |
| def test_save_load_fast_init_from_base(self): | |
| pass | |
| def test_save_load_fast_init_to_base(self): | |
| pass | |
| def test_model_from_pretrained(self): | |
| for model_name in BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
| model = BlipTextModel.from_pretrained(model_name) | |
| self.assertIsNotNone(model) | |
| def test_pt_tf_model_equivalence(self): | |
| super().test_pt_tf_model_equivalence(allow_missing_keys=True) | |
| class BlipModelTester: | |
| def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True): | |
| if text_kwargs is None: | |
| text_kwargs = {} | |
| if vision_kwargs is None: | |
| vision_kwargs = {} | |
| self.parent = parent | |
| self.text_model_tester = BlipTextModelTester(parent, **text_kwargs) | |
| self.vision_model_tester = BlipVisionModelTester(parent, **vision_kwargs) | |
| self.is_training = is_training | |
| def prepare_config_and_inputs(self): | |
| text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() | |
| vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs() | |
| config = self.get_config() | |
| return config, input_ids, attention_mask, pixel_values | |
| def get_config(self): | |
| return BlipConfig.from_text_vision_configs( | |
| self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64 | |
| ) | |
| def create_and_check_model(self, config, input_ids, attention_mask, pixel_values): | |
| model = BlipModel(config).to(torch_device).eval() | |
| with torch.no_grad(): | |
| result = model(input_ids, pixel_values, attention_mask) | |
| self.parent.assertEqual( | |
| result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size) | |
| ) | |
| self.parent.assertEqual( | |
| result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size) | |
| ) | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| config, input_ids, attention_mask, pixel_values = config_and_inputs | |
| inputs_dict = { | |
| "input_ids": input_ids, | |
| "attention_mask": attention_mask, | |
| "pixel_values": pixel_values, | |
| "return_loss": True, | |
| } | |
| return config, inputs_dict | |
| class BlipModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
| all_model_classes = (BlipModel,) if is_torch_available() else () | |
| pipeline_model_mapping = ( | |
| {"feature-extraction": BlipModel, "image-to-text": BlipForConditionalGeneration} | |
| if is_torch_available() | |
| else {} | |
| ) | |
| fx_compatible = False | |
| test_head_masking = False | |
| test_pruning = False | |
| test_resize_embeddings = False | |
| test_attention_outputs = False | |
| def setUp(self): | |
| self.model_tester = BlipModelTester(self) | |
| def test_model(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_model(*config_and_inputs) | |
| def test_hidden_states_output(self): | |
| pass | |
| def test_inputs_embeds(self): | |
| pass | |
| def test_retain_grad_hidden_states_attentions(self): | |
| pass | |
| def test_model_common_attributes(self): | |
| pass | |
| # override as the `logit_scale` parameter initilization is different for Blip | |
| def test_initialization(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| configs_no_init = _config_zero_init(config) | |
| for model_class in self.all_model_classes: | |
| model = model_class(config=configs_no_init) | |
| for name, param in model.named_parameters(): | |
| if param.requires_grad: | |
| # check if `logit_scale` is initilized as per the original implementation | |
| if name == "logit_scale": | |
| self.assertAlmostEqual( | |
| param.data.item(), | |
| np.log(1 / 0.07), | |
| delta=1e-3, | |
| msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
| ) | |
| else: | |
| self.assertIn( | |
| ((param.data.mean() * 1e9).round() / 1e9).item(), | |
| [0.0, 1.0], | |
| msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
| ) | |
| def _create_and_check_torchscript(self, config, inputs_dict): | |
| if not self.test_torchscript: | |
| return | |
| configs_no_init = _config_zero_init(config) # To be sure we have no Nan | |
| configs_no_init.torchscript = True | |
| configs_no_init.return_dict = False | |
| for model_class in self.all_model_classes: | |
| model = model_class(config=configs_no_init) | |
| model.to(torch_device) | |
| model.eval() | |
| try: | |
| input_ids = inputs_dict["input_ids"] | |
| pixel_values = inputs_dict["pixel_values"] # Blip needs pixel_values | |
| traced_model = torch.jit.trace(model, (input_ids, pixel_values)) | |
| except RuntimeError: | |
| self.fail("Couldn't trace module.") | |
| with tempfile.TemporaryDirectory() as tmp_dir_name: | |
| pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") | |
| try: | |
| torch.jit.save(traced_model, pt_file_name) | |
| except Exception: | |
| self.fail("Couldn't save module.") | |
| try: | |
| loaded_model = torch.jit.load(pt_file_name) | |
| except Exception: | |
| self.fail("Couldn't load module.") | |
| model.to(torch_device) | |
| model.eval() | |
| loaded_model.to(torch_device) | |
| loaded_model.eval() | |
| model_state_dict = model.state_dict() | |
| loaded_model_state_dict = loaded_model.state_dict() | |
| self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) | |
| models_equal = True | |
| for layer_name, p1 in model_state_dict.items(): | |
| p2 = loaded_model_state_dict[layer_name] | |
| if p1.data.ne(p2.data).sum() > 0: | |
| models_equal = False | |
| self.assertTrue(models_equal) | |
| def test_load_vision_text_config(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| # Save BlipConfig and check if we can load BlipVisionConfig from it | |
| with tempfile.TemporaryDirectory() as tmp_dir_name: | |
| config.save_pretrained(tmp_dir_name) | |
| vision_config = BlipVisionConfig.from_pretrained(tmp_dir_name) | |
| self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict()) | |
| # Save BlipConfig and check if we can load BlipTextConfig from it | |
| with tempfile.TemporaryDirectory() as tmp_dir_name: | |
| config.save_pretrained(tmp_dir_name) | |
| text_config = BlipTextConfig.from_pretrained(tmp_dir_name) | |
| self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict()) | |
| def test_model_from_pretrained(self): | |
| for model_name in BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
| model = BlipModel.from_pretrained(model_name) | |
| self.assertIsNotNone(model) | |
| def test_pt_tf_model_equivalence(self): | |
| super().test_pt_tf_model_equivalence(allow_missing_keys=True) | |
| class BlipTextRetrievalModelTester: | |
| def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True): | |
| if text_kwargs is None: | |
| text_kwargs = {} | |
| if vision_kwargs is None: | |
| vision_kwargs = {} | |
| self.parent = parent | |
| self.text_model_tester = BlipTextModelTester(parent, **text_kwargs) | |
| self.vision_model_tester = BlipVisionModelTester(parent, **vision_kwargs) | |
| self.is_training = is_training | |
| def prepare_config_and_inputs(self): | |
| text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() | |
| vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs() | |
| config = self.get_config() | |
| return config, input_ids, attention_mask, pixel_values | |
| def get_config(self): | |
| return BlipConfig.from_text_vision_configs( | |
| self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64 | |
| ) | |
| def create_and_check_model(self, config, input_ids, attention_mask, pixel_values): | |
| model = BlipModel(config).to(torch_device).eval() | |
| with torch.no_grad(): | |
| result = model(input_ids, pixel_values, attention_mask) | |
| self.parent.assertEqual( | |
| result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size) | |
| ) | |
| self.parent.assertEqual( | |
| result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size) | |
| ) | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| config, input_ids, attention_mask, pixel_values = config_and_inputs | |
| inputs_dict = { | |
| "input_ids": input_ids, | |
| "attention_mask": attention_mask, | |
| "pixel_values": pixel_values, | |
| } | |
| return config, inputs_dict | |
| class BlipTextImageModelsModelTester: | |
| def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True): | |
| if text_kwargs is None: | |
| text_kwargs = {} | |
| if vision_kwargs is None: | |
| vision_kwargs = {} | |
| self.parent = parent | |
| self.text_model_tester = BlipTextModelTester(parent, **text_kwargs) | |
| self.vision_model_tester = BlipVisionModelTester(parent, **vision_kwargs) | |
| self.is_training = is_training | |
| def prepare_config_and_inputs(self): | |
| text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() | |
| vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs() | |
| config = self.get_config() | |
| return config, input_ids, attention_mask, pixel_values | |
| def get_config(self): | |
| return BlipConfig.from_text_vision_configs( | |
| self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64 | |
| ) | |
| def create_and_check_model(self, config, input_ids, attention_mask, pixel_values): | |
| model = BlipModel(config).to(torch_device).eval() | |
| with torch.no_grad(): | |
| result = model(input_ids, pixel_values, attention_mask) | |
| self.parent.assertEqual( | |
| result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size) | |
| ) | |
| self.parent.assertEqual( | |
| result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size) | |
| ) | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| config, input_ids, attention_mask, pixel_values = config_and_inputs | |
| inputs_dict = { | |
| "input_ids": input_ids, | |
| "labels": input_ids, | |
| "attention_mask": attention_mask, | |
| "pixel_values": pixel_values, | |
| } | |
| return config, inputs_dict | |
| class BlipVQAModelTest(unittest.TestCase): | |
| all_model_classes = (BlipForQuestionAnswering,) if is_torch_available() else () | |
| def setUp(self): | |
| self.model_tester = BlipModelTester(self) | |
| def _prepare_inputs_for_vqa(self): | |
| _, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| inputs_dict["labels"] = inputs_dict["input_ids"] | |
| inputs_dict.pop("return_loss") | |
| return inputs_dict | |
| def test_class_name_consistency(self): | |
| """ | |
| Tests that all VQA models have a class name that ends with "ForQuestionAnswering" | |
| """ | |
| for model_class in self.all_model_classes: | |
| model = model_class(self.model_tester.get_config()) | |
| self.assertTrue( | |
| model.__class__.__name__.endswith("ForQuestionAnswering"), | |
| f"Class name should end with 'ForVisualQuestionAnswering' got {model.__class__.__name__}", | |
| ) | |
| def test_training(self): | |
| """ | |
| Tests that all VQA models can be trained on a single batch | |
| """ | |
| for model_class in self.all_model_classes: | |
| model = model_class(self.model_tester.get_config()).to(torch_device) | |
| model.train() | |
| loss = model(**self._prepare_inputs_for_vqa()).loss | |
| loss.backward() | |
| # verify the gradients are not None | |
| for name, param in model.named_parameters(): | |
| self.assertIsNotNone(param.grad, f"Gradients should not be None - got {param.grad} for {name}") | |
| def test_forward_signature(self): | |
| """ | |
| Test if the forward function has the expected arguments. | |
| """ | |
| for model_class in self.all_model_classes: | |
| model = model_class(self.model_tester.get_config()) | |
| signature = inspect.signature(model.forward) | |
| # signature.parameters is an OrderedDict => so args are the first n entries | |
| args = list(signature.parameters.keys()) | |
| expected_args = [ | |
| "input_ids", | |
| "attention_mask", | |
| "labels", | |
| "decoder_input_ids", | |
| "decoder_attention_mask", | |
| ] | |
| for arg in expected_args: | |
| self.assertTrue( | |
| arg in args, | |
| f"Argument {arg} of forward function signature should include {arg}. Found {args}.", | |
| ) | |
| class BlipTextRetrievalModelTest(ModelTesterMixin, unittest.TestCase): | |
| all_model_classes = (BlipForImageTextRetrieval,) if is_torch_available() else () | |
| fx_compatible = False | |
| test_head_masking = False | |
| test_pruning = False | |
| test_resize_embeddings = False | |
| test_attention_outputs = False | |
| test_torchscript = False | |
| def setUp(self): | |
| self.model_tester = BlipTextRetrievalModelTester(self) | |
| def test_model(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_model(*config_and_inputs) | |
| def test_hidden_states_output(self): | |
| pass | |
| def test_inputs_embeds(self): | |
| pass | |
| def test_retain_grad_hidden_states_attentions(self): | |
| pass | |
| def test_model_common_attributes(self): | |
| pass | |
| def test_forward_signature(self): | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| signature = inspect.signature(model.forward) | |
| # signature.parameters is an OrderedDict => so arg_names order is deterministic | |
| arg_names = [*signature.parameters.keys()] | |
| if model.config.is_encoder_decoder: | |
| expected_arg_names = [ | |
| "input_ids", | |
| "attention_mask", | |
| "decoder_input_ids", | |
| "decoder_attention_mask", | |
| ] | |
| expected_arg_names.extend( | |
| ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"] | |
| if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names | |
| else ["encoder_outputs"] | |
| ) | |
| self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) | |
| else: | |
| expected_arg_names = ["input_ids"] if model_class != BlipForConditionalGeneration else ["pixel_values"] | |
| self.assertListEqual(arg_names[:1], expected_arg_names) | |
| def test_training(self): | |
| if not self.model_tester.is_training: | |
| return | |
| for model_class in self.all_model_classes[:-1]: | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| config.return_dict = True | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.train() | |
| inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
| # hardcode labels to be the same as input_ids | |
| inputs["labels"] = inputs["input_ids"] | |
| loss = model(**inputs).loss | |
| loss.backward() | |
| def test_training_gradient_checkpointing(self): | |
| if not self.model_tester.is_training: | |
| return | |
| for model_class in self.all_model_classes[:-1]: | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| config.use_cache = False | |
| config.return_dict = True | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.gradient_checkpointing_enable() | |
| model.train() | |
| inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
| # hardcode labels to be the same as input_ids | |
| inputs["labels"] = inputs["input_ids"] | |
| loss = model(**inputs).loss | |
| loss.backward() | |
| # override as the `logit_scale` parameter initilization is different for Blip | |
| def test_initialization(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| configs_no_init = _config_zero_init(config) | |
| for model_class in self.all_model_classes: | |
| model = model_class(config=configs_no_init) | |
| for name, param in model.named_parameters(): | |
| if param.requires_grad: | |
| # check if `logit_scale` is initilized as per the original implementation | |
| if name == "logit_scale": | |
| self.assertAlmostEqual( | |
| param.data.item(), | |
| np.log(1 / 0.07), | |
| delta=1e-3, | |
| msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
| ) | |
| else: | |
| self.assertIn( | |
| ((param.data.mean() * 1e9).round() / 1e9).item(), | |
| [0.0, 1.0], | |
| msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
| ) | |
| def _create_and_check_torchscript(self, config, inputs_dict): | |
| if not self.test_torchscript: | |
| return | |
| configs_no_init = _config_zero_init(config) # To be sure we have no Nan | |
| configs_no_init.torchscript = True | |
| configs_no_init.return_dict = False | |
| for model_class in self.all_model_classes: | |
| model = model_class(config=configs_no_init) | |
| model.to(torch_device) | |
| model.eval() | |
| try: | |
| input_ids = inputs_dict["input_ids"] | |
| pixel_values = inputs_dict["pixel_values"] # Blip needs pixel_values | |
| traced_model = torch.jit.trace(model, (input_ids, pixel_values)) | |
| except RuntimeError: | |
| self.fail("Couldn't trace module.") | |
| with tempfile.TemporaryDirectory() as tmp_dir_name: | |
| pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") | |
| try: | |
| torch.jit.save(traced_model, pt_file_name) | |
| except Exception: | |
| self.fail("Couldn't save module.") | |
| try: | |
| loaded_model = torch.jit.load(pt_file_name) | |
| except Exception: | |
| self.fail("Couldn't load module.") | |
| model.to(torch_device) | |
| model.eval() | |
| loaded_model.to(torch_device) | |
| loaded_model.eval() | |
| model_state_dict = model.state_dict() | |
| loaded_model_state_dict = loaded_model.state_dict() | |
| self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) | |
| models_equal = True | |
| for layer_name, p1 in model_state_dict.items(): | |
| p2 = loaded_model_state_dict[layer_name] | |
| if p1.data.ne(p2.data).sum() > 0: | |
| models_equal = False | |
| self.assertTrue(models_equal) | |
| def test_load_vision_text_config(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| # Save BlipConfig and check if we can load BlipVisionConfig from it | |
| with tempfile.TemporaryDirectory() as tmp_dir_name: | |
| config.save_pretrained(tmp_dir_name) | |
| vision_config = BlipVisionConfig.from_pretrained(tmp_dir_name) | |
| self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict()) | |
| # Save BlipConfig and check if we can load BlipTextConfig from it | |
| with tempfile.TemporaryDirectory() as tmp_dir_name: | |
| config.save_pretrained(tmp_dir_name) | |
| text_config = BlipTextConfig.from_pretrained(tmp_dir_name) | |
| self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict()) | |
| def test_model_from_pretrained(self): | |
| for model_name in BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
| model = BlipModel.from_pretrained(model_name) | |
| self.assertIsNotNone(model) | |
| class BlipTextImageModelTest(ModelTesterMixin, unittest.TestCase): | |
| all_model_classes = ( | |
| ( | |
| BlipForConditionalGeneration, | |
| BlipForQuestionAnswering, | |
| ) | |
| if is_torch_available() | |
| else () | |
| ) | |
| fx_compatible = False | |
| test_head_masking = False | |
| test_pruning = False | |
| test_resize_embeddings = False | |
| test_attention_outputs = False | |
| test_torchscript = False | |
| def setUp(self): | |
| self.model_tester = BlipTextImageModelsModelTester(self) | |
| def test_model(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_model(*config_and_inputs) | |
| def test_hidden_states_output(self): | |
| pass | |
| def test_inputs_embeds(self): | |
| pass | |
| def test_retain_grad_hidden_states_attentions(self): | |
| pass | |
| def test_model_common_attributes(self): | |
| pass | |
| def test_forward_signature(self): | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| signature = inspect.signature(model.forward) | |
| # signature.parameters is an OrderedDict => so arg_names order is deterministic | |
| arg_names = [*signature.parameters.keys()] | |
| if model.config.is_encoder_decoder: | |
| expected_arg_names = [ | |
| "input_ids", | |
| "attention_mask", | |
| "decoder_input_ids", | |
| "decoder_attention_mask", | |
| ] | |
| expected_arg_names.extend( | |
| ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"] | |
| if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names | |
| else ["encoder_outputs"] | |
| ) | |
| self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) | |
| else: | |
| expected_arg_names = ["input_ids"] if model_class != BlipForConditionalGeneration else ["pixel_values"] | |
| self.assertListEqual(arg_names[:1], expected_arg_names) | |
| def test_training(self): | |
| if not self.model_tester.is_training: | |
| return | |
| for model_class in self.all_model_classes[:-1]: | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| config.return_dict = True | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.train() | |
| inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
| # hardcode labels to be the same as input_ids | |
| inputs["labels"] = inputs["input_ids"] | |
| loss = model(**inputs).loss | |
| loss.backward() | |
| def test_training_gradient_checkpointing(self): | |
| if not self.model_tester.is_training: | |
| return | |
| for model_class in self.all_model_classes[:-1]: | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| config.use_cache = False | |
| config.return_dict = True | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.gradient_checkpointing_enable() | |
| model.train() | |
| inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
| # hardcode labels to be the same as input_ids | |
| inputs["labels"] = inputs["input_ids"] | |
| loss = model(**inputs).loss | |
| loss.backward() | |
| # override as the `logit_scale` parameter initilization is different for Blip | |
| def test_initialization(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| configs_no_init = _config_zero_init(config) | |
| for model_class in self.all_model_classes: | |
| model = model_class(config=configs_no_init) | |
| for name, param in model.named_parameters(): | |
| if param.requires_grad: | |
| # check if `logit_scale` is initilized as per the original implementation | |
| if name == "logit_scale": | |
| self.assertAlmostEqual( | |
| param.data.item(), | |
| np.log(1 / 0.07), | |
| delta=1e-3, | |
| msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
| ) | |
| else: | |
| self.assertIn( | |
| ((param.data.mean() * 1e9).round() / 1e9).item(), | |
| [0.0, 1.0], | |
| msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
| ) | |
| def _create_and_check_torchscript(self, config, inputs_dict): | |
| if not self.test_torchscript: | |
| return | |
| configs_no_init = _config_zero_init(config) # To be sure we have no Nan | |
| configs_no_init.torchscript = True | |
| configs_no_init.return_dict = False | |
| for model_class in self.all_model_classes: | |
| model = model_class(config=configs_no_init) | |
| model.to(torch_device) | |
| model.eval() | |
| try: | |
| input_ids = inputs_dict["input_ids"] | |
| pixel_values = inputs_dict["pixel_values"] # Blip needs pixel_values | |
| traced_model = torch.jit.trace(model, (input_ids, pixel_values)) | |
| except RuntimeError: | |
| self.fail("Couldn't trace module.") | |
| with tempfile.TemporaryDirectory() as tmp_dir_name: | |
| pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") | |
| try: | |
| torch.jit.save(traced_model, pt_file_name) | |
| except Exception: | |
| self.fail("Couldn't save module.") | |
| try: | |
| loaded_model = torch.jit.load(pt_file_name) | |
| except Exception: | |
| self.fail("Couldn't load module.") | |
| model.to(torch_device) | |
| model.eval() | |
| loaded_model.to(torch_device) | |
| loaded_model.eval() | |
| model_state_dict = model.state_dict() | |
| loaded_model_state_dict = loaded_model.state_dict() | |
| self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) | |
| models_equal = True | |
| for layer_name, p1 in model_state_dict.items(): | |
| p2 = loaded_model_state_dict[layer_name] | |
| if p1.data.ne(p2.data).sum() > 0: | |
| models_equal = False | |
| self.assertTrue(models_equal) | |
| def test_load_vision_text_config(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| # Save BlipConfig and check if we can load BlipVisionConfig from it | |
| with tempfile.TemporaryDirectory() as tmp_dir_name: | |
| config.save_pretrained(tmp_dir_name) | |
| vision_config = BlipVisionConfig.from_pretrained(tmp_dir_name) | |
| self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict()) | |
| # Save BlipConfig and check if we can load BlipTextConfig from it | |
| with tempfile.TemporaryDirectory() as tmp_dir_name: | |
| config.save_pretrained(tmp_dir_name) | |
| text_config = BlipTextConfig.from_pretrained(tmp_dir_name) | |
| self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict()) | |
| def test_model_from_pretrained(self): | |
| for model_name in BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
| model = BlipModel.from_pretrained(model_name) | |
| self.assertIsNotNone(model) | |
| # We will verify our results on an image of cute cats | |
| def prepare_img(): | |
| url = "https://huggingface.co/hf-internal-testing/blip-test-image/resolve/main/demo.jpg" | |
| im = Image.open(requests.get(url, stream=True).raw) | |
| return im | |
| class BlipModelIntegrationTest(unittest.TestCase): | |
| def test_inference_image_captioning(self): | |
| model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(torch_device) | |
| processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
| image = prepare_img() | |
| # image only | |
| inputs = processor(images=image, return_tensors="pt").to(torch_device) | |
| predictions = model.generate(**inputs) | |
| # Test output | |
| self.assertEqual(predictions[0].tolist(), [30522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102]) | |
| # image and context | |
| context = ["a picture of"] | |
| inputs = processor(images=image, text=context, return_tensors="pt").to(torch_device) | |
| predictions = model.generate(**inputs) | |
| # Test output | |
| self.assertEqual( | |
| predictions[0].tolist(), | |
| [30522, 1037, 3861, 1997, 1037, 2450, 1998, 2014, 3899, 2006, 1996, 3509, 102], | |
| ) | |
| def test_inference_image_captioning_fp16(self): | |
| model = BlipForConditionalGeneration.from_pretrained( | |
| "Salesforce/blip-image-captioning-base", torch_dtype=torch.float16 | |
| ).to(torch_device) | |
| processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
| image = prepare_img() | |
| # image only | |
| inputs = processor(images=image, return_tensors="pt").to(torch_device, torch.float16) | |
| predictions = model.generate(**inputs) | |
| # Test output | |
| self.assertEqual(predictions[0].tolist(), [30522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102]) | |
| # image and context | |
| context = ["a picture of"] | |
| inputs = processor(images=image, text=context, return_tensors="pt").to(torch_device, torch.float16) | |
| predictions = model.generate(**inputs) | |
| # Test output | |
| self.assertEqual( | |
| predictions[0].tolist(), | |
| [30522, 1037, 3861, 1997, 1037, 2450, 1998, 2014, 3899, 2006, 1996, 3509, 102], | |
| ) | |
| def test_inference_vqa(self): | |
| model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base").to(torch_device) | |
| processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base") | |
| image = prepare_img() | |
| text = "how many dogs are in the picture?" | |
| inputs = processor(image, text=text, return_tensors="pt").to(torch_device) | |
| out = model.generate(**inputs) | |
| # Test output | |
| self.assertEqual(out[0].tolist(), [30522, 1015, 102]) | |
| def test_inference_itm(self): | |
| model = BlipForImageTextRetrieval.from_pretrained("Salesforce/blip-itm-base-coco").to(torch_device) | |
| processor = BlipProcessor.from_pretrained("Salesforce/blip-itm-base-coco") | |
| image = prepare_img() | |
| text = "A woman and her dog sitting in a beach" | |
| inputs = processor(image, text, return_tensors="pt").to(torch_device) | |
| out_itm = model(**inputs) | |
| out = model(**inputs, use_itm_head=False) | |
| expected_scores = torch.Tensor([[0.0029, 0.9971]]) | |
| self.assertTrue(torch.allclose(torch.nn.Softmax()(out_itm[0].cpu()), expected_scores, rtol=1e-3, atol=1e-3)) | |
| self.assertTrue(torch.allclose(out[0].cpu(), torch.Tensor([[0.5162]]), rtol=1e-3, atol=1e-3)) | |