Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Testing suite for the PyTorch ALIGN model. """ | |
| import inspect | |
| import os | |
| import tempfile | |
| import unittest | |
| import requests | |
| from transformers import AlignConfig, AlignProcessor, AlignTextConfig, AlignVisionConfig | |
| from transformers.testing_utils import ( | |
| is_flax_available, | |
| require_torch, | |
| require_vision, | |
| slow, | |
| torch_device, | |
| ) | |
| from transformers.utils import is_torch_available, is_vision_available | |
| from ...test_configuration_common import ConfigTester | |
| from ...test_modeling_common import ( | |
| ModelTesterMixin, | |
| _config_zero_init, | |
| floats_tensor, | |
| ids_tensor, | |
| random_attention_mask, | |
| ) | |
| from ...test_pipeline_mixin import PipelineTesterMixin | |
| if is_torch_available(): | |
| import torch | |
| from transformers import ( | |
| AlignModel, | |
| AlignTextModel, | |
| AlignVisionModel, | |
| ) | |
| from transformers.models.align.modeling_align import ALIGN_PRETRAINED_MODEL_ARCHIVE_LIST | |
| if is_vision_available(): | |
| from PIL import Image | |
| if is_flax_available(): | |
| pass | |
| class AlignVisionModelTester: | |
| def __init__( | |
| self, | |
| parent, | |
| batch_size=12, | |
| image_size=32, | |
| num_channels=3, | |
| kernel_sizes=[3, 3, 5], | |
| in_channels=[32, 16, 24], | |
| out_channels=[16, 24, 30], | |
| hidden_dim=64, | |
| strides=[1, 1, 2], | |
| num_block_repeats=[1, 1, 2], | |
| expand_ratios=[1, 6, 6], | |
| is_training=True, | |
| hidden_act="gelu", | |
| ): | |
| self.parent = parent | |
| self.batch_size = batch_size | |
| self.image_size = image_size | |
| self.num_channels = num_channels | |
| self.kernel_sizes = kernel_sizes | |
| self.in_channels = in_channels | |
| self.out_channels = out_channels | |
| self.hidden_dim = hidden_dim | |
| self.strides = strides | |
| self.num_block_repeats = num_block_repeats | |
| self.expand_ratios = expand_ratios | |
| self.is_training = is_training | |
| self.hidden_act = hidden_act | |
| def prepare_config_and_inputs(self): | |
| pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) | |
| config = self.get_config() | |
| return config, pixel_values | |
| def get_config(self): | |
| return AlignVisionConfig( | |
| num_channels=self.num_channels, | |
| kernel_sizes=self.kernel_sizes, | |
| in_channels=self.in_channels, | |
| out_channels=self.out_channels, | |
| hidden_dim=self.hidden_dim, | |
| strides=self.strides, | |
| num_block_repeats=self.num_block_repeats, | |
| expand_ratios=self.expand_ratios, | |
| hidden_act=self.hidden_act, | |
| ) | |
| def create_and_check_model(self, config, pixel_values): | |
| model = AlignVisionModel(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| result = model(pixel_values) | |
| patch_size = self.image_size // 4 | |
| self.parent.assertEqual( | |
| result.last_hidden_state.shape, (self.batch_size, config.hidden_dim, patch_size, patch_size) | |
| ) | |
| self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, config.hidden_dim)) | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| config, pixel_values = config_and_inputs | |
| inputs_dict = {"pixel_values": pixel_values} | |
| return config, inputs_dict | |
| class AlignVisionModelTest(ModelTesterMixin, unittest.TestCase): | |
| """ | |
| Here we also overwrite some of the tests of test_modeling_common.py, as ALIGN does not use input_ids, inputs_embeds, | |
| attention_mask and seq_length. | |
| """ | |
| all_model_classes = (AlignVisionModel,) if is_torch_available() else () | |
| fx_compatible = False | |
| test_pruning = False | |
| test_resize_embeddings = False | |
| test_head_masking = False | |
| has_attentions = False | |
| def setUp(self): | |
| self.model_tester = AlignVisionModelTester(self) | |
| self.config_tester = ConfigTester( | |
| self, config_class=AlignVisionConfig, has_text_modality=False, hidden_size=37 | |
| ) | |
| def test_config(self): | |
| self.create_and_test_config_common_properties() | |
| self.config_tester.create_and_test_config_to_json_string() | |
| self.config_tester.create_and_test_config_to_json_file() | |
| self.config_tester.create_and_test_config_from_and_save_pretrained() | |
| self.config_tester.create_and_test_config_with_num_labels() | |
| self.config_tester.check_config_can_be_init_without_params() | |
| self.config_tester.check_config_arguments_init() | |
| def create_and_test_config_common_properties(self): | |
| return | |
| def test_inputs_embeds(self): | |
| pass | |
| def test_model_common_attributes(self): | |
| pass | |
| def test_forward_signature(self): | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| signature = inspect.signature(model.forward) | |
| # signature.parameters is an OrderedDict => so arg_names order is deterministic | |
| arg_names = [*signature.parameters.keys()] | |
| expected_arg_names = ["pixel_values"] | |
| self.assertListEqual(arg_names[:1], expected_arg_names) | |
| def test_model(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_model(*config_and_inputs) | |
| def test_hidden_states_output(self): | |
| def check_hidden_states_output(inputs_dict, config, model_class): | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states | |
| num_blocks = sum(config.num_block_repeats) * 4 | |
| self.assertEqual(len(hidden_states), num_blocks) | |
| self.assertListEqual( | |
| list(hidden_states[0].shape[-2:]), | |
| [self.model_tester.image_size // 2, self.model_tester.image_size // 2], | |
| ) | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| inputs_dict["output_hidden_states"] = True | |
| check_hidden_states_output(inputs_dict, config, model_class) | |
| # check that output_hidden_states also work using config | |
| del inputs_dict["output_hidden_states"] | |
| config.output_hidden_states = True | |
| check_hidden_states_output(inputs_dict, config, model_class) | |
| def test_training(self): | |
| pass | |
| def test_training_gradient_checkpointing(self): | |
| pass | |
| def test_model_from_pretrained(self): | |
| for model_name in ALIGN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
| model = AlignVisionModel.from_pretrained(model_name) | |
| self.assertIsNotNone(model) | |
| class AlignTextModelTester: | |
| def __init__( | |
| self, | |
| parent, | |
| batch_size=12, | |
| seq_length=7, | |
| is_training=True, | |
| use_input_mask=True, | |
| use_token_type_ids=True, | |
| vocab_size=99, | |
| hidden_size=32, | |
| num_hidden_layers=5, | |
| num_attention_heads=4, | |
| intermediate_size=37, | |
| hidden_act="gelu", | |
| hidden_dropout_prob=0.1, | |
| attention_probs_dropout_prob=0.1, | |
| max_position_embeddings=512, | |
| type_vocab_size=16, | |
| type_sequence_label_size=2, | |
| initializer_range=0.02, | |
| scope=None, | |
| ): | |
| self.parent = parent | |
| self.batch_size = batch_size | |
| self.seq_length = seq_length | |
| self.is_training = is_training | |
| self.use_input_mask = use_input_mask | |
| self.use_token_type_ids = use_token_type_ids | |
| self.vocab_size = vocab_size | |
| self.hidden_size = hidden_size | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.intermediate_size = intermediate_size | |
| self.hidden_act = hidden_act | |
| self.hidden_dropout_prob = hidden_dropout_prob | |
| self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
| self.max_position_embeddings = max_position_embeddings | |
| self.type_vocab_size = type_vocab_size | |
| self.type_sequence_label_size = type_sequence_label_size | |
| self.initializer_range = initializer_range | |
| self.scope = scope | |
| def prepare_config_and_inputs(self): | |
| input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
| input_mask = None | |
| if self.use_input_mask: | |
| input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
| token_type_ids = None | |
| if self.use_token_type_ids: | |
| token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
| config = self.get_config() | |
| return config, input_ids, token_type_ids, input_mask | |
| def get_config(self): | |
| return AlignTextConfig( | |
| vocab_size=self.vocab_size, | |
| hidden_size=self.hidden_size, | |
| num_hidden_layers=self.num_hidden_layers, | |
| num_attention_heads=self.num_attention_heads, | |
| intermediate_size=self.intermediate_size, | |
| hidden_act=self.hidden_act, | |
| hidden_dropout_prob=self.hidden_dropout_prob, | |
| attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
| max_position_embeddings=self.max_position_embeddings, | |
| type_vocab_size=self.type_vocab_size, | |
| is_decoder=False, | |
| initializer_range=self.initializer_range, | |
| ) | |
| def create_and_check_model(self, config, input_ids, token_type_ids, input_mask): | |
| model = AlignTextModel(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) | |
| result = model(input_ids, token_type_ids=token_type_ids) | |
| result = model(input_ids) | |
| self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
| self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| ( | |
| config, | |
| input_ids, | |
| token_type_ids, | |
| input_mask, | |
| ) = config_and_inputs | |
| inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} | |
| return config, inputs_dict | |
| class AlignTextModelTest(ModelTesterMixin, unittest.TestCase): | |
| all_model_classes = (AlignTextModel,) if is_torch_available() else () | |
| fx_compatible = False | |
| test_pruning = False | |
| test_head_masking = False | |
| def setUp(self): | |
| self.model_tester = AlignTextModelTester(self) | |
| self.config_tester = ConfigTester(self, config_class=AlignTextConfig, hidden_size=37) | |
| def test_config(self): | |
| self.config_tester.run_common_tests() | |
| def test_model(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_model(*config_and_inputs) | |
| def test_training(self): | |
| pass | |
| def test_training_gradient_checkpointing(self): | |
| pass | |
| def test_inputs_embeds(self): | |
| pass | |
| def test_save_load_fast_init_from_base(self): | |
| pass | |
| def test_save_load_fast_init_to_base(self): | |
| pass | |
| def test_model_from_pretrained(self): | |
| for model_name in ALIGN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
| model = AlignTextModel.from_pretrained(model_name) | |
| self.assertIsNotNone(model) | |
| class AlignModelTester: | |
| def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True): | |
| if text_kwargs is None: | |
| text_kwargs = {} | |
| if vision_kwargs is None: | |
| vision_kwargs = {} | |
| self.parent = parent | |
| self.text_model_tester = AlignTextModelTester(parent, **text_kwargs) | |
| self.vision_model_tester = AlignVisionModelTester(parent, **vision_kwargs) | |
| self.is_training = is_training | |
| def prepare_config_and_inputs(self): | |
| test_config, input_ids, token_type_ids, input_mask = self.text_model_tester.prepare_config_and_inputs() | |
| vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs() | |
| config = self.get_config() | |
| return config, input_ids, token_type_ids, input_mask, pixel_values | |
| def get_config(self): | |
| return AlignConfig.from_text_vision_configs( | |
| self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64 | |
| ) | |
| def create_and_check_model(self, config, input_ids, token_type_ids, attention_mask, pixel_values): | |
| model = AlignModel(config).to(torch_device).eval() | |
| with torch.no_grad(): | |
| result = model(input_ids, pixel_values, attention_mask, token_type_ids) | |
| self.parent.assertEqual( | |
| result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size) | |
| ) | |
| self.parent.assertEqual( | |
| result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size) | |
| ) | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| config, input_ids, token_type_ids, input_mask, pixel_values = config_and_inputs | |
| inputs_dict = { | |
| "input_ids": input_ids, | |
| "token_type_ids": token_type_ids, | |
| "attention_mask": input_mask, | |
| "pixel_values": pixel_values, | |
| "return_loss": True, | |
| } | |
| return config, inputs_dict | |
| class AlignModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
| all_model_classes = (AlignModel,) if is_torch_available() else () | |
| pipeline_model_mapping = {"feature-extraction": AlignModel} if is_torch_available() else {} | |
| fx_compatible = False | |
| test_head_masking = False | |
| test_pruning = False | |
| test_resize_embeddings = False | |
| test_attention_outputs = False | |
| def setUp(self): | |
| self.model_tester = AlignModelTester(self) | |
| def test_model(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_model(*config_and_inputs) | |
| def test_hidden_states_output(self): | |
| pass | |
| def test_inputs_embeds(self): | |
| pass | |
| def test_retain_grad_hidden_states_attentions(self): | |
| pass | |
| def test_model_common_attributes(self): | |
| pass | |
| # override as the `temperature` parameter initilization is different for ALIGN | |
| def test_initialization(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| configs_no_init = _config_zero_init(config) | |
| for model_class in self.all_model_classes: | |
| model = model_class(config=configs_no_init) | |
| for name, param in model.named_parameters(): | |
| if param.requires_grad: | |
| # check if `temperature` is initilized as per the original implementation | |
| if name == "temperature": | |
| self.assertAlmostEqual( | |
| param.data.item(), | |
| 1.0, | |
| delta=1e-3, | |
| msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
| ) | |
| elif name == "text_projection.weight": | |
| self.assertTrue( | |
| -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, | |
| msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
| ) | |
| else: | |
| self.assertIn( | |
| ((param.data.mean() * 1e9).round() / 1e9).item(), | |
| [0.0, 1.0], | |
| msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
| ) | |
| def _create_and_check_torchscript(self, config, inputs_dict): | |
| if not self.test_torchscript: | |
| return | |
| configs_no_init = _config_zero_init(config) # To be sure we have no Nan | |
| configs_no_init.torchscript = True | |
| configs_no_init.return_dict = False | |
| for model_class in self.all_model_classes: | |
| model = model_class(config=configs_no_init) | |
| model.to(torch_device) | |
| model.eval() | |
| try: | |
| input_ids = inputs_dict["input_ids"] | |
| pixel_values = inputs_dict["pixel_values"] # ALIGN needs pixel_values | |
| traced_model = torch.jit.trace(model, (input_ids, pixel_values)) | |
| except RuntimeError: | |
| self.fail("Couldn't trace module.") | |
| with tempfile.TemporaryDirectory() as tmp_dir_name: | |
| pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") | |
| try: | |
| torch.jit.save(traced_model, pt_file_name) | |
| except Exception: | |
| self.fail("Couldn't save module.") | |
| try: | |
| loaded_model = torch.jit.load(pt_file_name) | |
| except Exception: | |
| self.fail("Couldn't load module.") | |
| model.to(torch_device) | |
| model.eval() | |
| loaded_model.to(torch_device) | |
| loaded_model.eval() | |
| model_state_dict = model.state_dict() | |
| loaded_model_state_dict = loaded_model.state_dict() | |
| non_persistent_buffers = {} | |
| for key in loaded_model_state_dict.keys(): | |
| if key not in model_state_dict.keys(): | |
| non_persistent_buffers[key] = loaded_model_state_dict[key] | |
| loaded_model_state_dict = { | |
| key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers | |
| } | |
| self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) | |
| models_equal = True | |
| for layer_name, p1 in model_state_dict.items(): | |
| p2 = loaded_model_state_dict[layer_name] | |
| if p1.data.ne(p2.data).sum() > 0: | |
| models_equal = False | |
| self.assertTrue(models_equal) | |
| def test_load_vision_text_config(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| # Save AlignConfig and check if we can load AlignVisionConfig from it | |
| with tempfile.TemporaryDirectory() as tmp_dir_name: | |
| config.save_pretrained(tmp_dir_name) | |
| vision_config = AlignVisionConfig.from_pretrained(tmp_dir_name) | |
| self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict()) | |
| # Save AlignConfig and check if we can load AlignTextConfig from it | |
| with tempfile.TemporaryDirectory() as tmp_dir_name: | |
| config.save_pretrained(tmp_dir_name) | |
| text_config = AlignTextConfig.from_pretrained(tmp_dir_name) | |
| self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict()) | |
| def test_model_from_pretrained(self): | |
| for model_name in ALIGN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
| model = AlignModel.from_pretrained(model_name) | |
| self.assertIsNotNone(model) | |
| # We will verify our results on an image of cute cats | |
| def prepare_img(): | |
| url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
| im = Image.open(requests.get(url, stream=True).raw) | |
| return im | |
| class AlignModelIntegrationTest(unittest.TestCase): | |
| def test_inference(self): | |
| model_name = "kakaobrain/align-base" | |
| model = AlignModel.from_pretrained(model_name).to(torch_device) | |
| processor = AlignProcessor.from_pretrained(model_name) | |
| image = prepare_img() | |
| texts = ["a photo of a cat", "a photo of a dog"] | |
| inputs = processor(text=texts, images=image, return_tensors="pt").to(torch_device) | |
| # forward pass | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| # verify the logits | |
| self.assertEqual( | |
| outputs.logits_per_image.shape, | |
| torch.Size((inputs.pixel_values.shape[0], inputs.input_ids.shape[0])), | |
| ) | |
| self.assertEqual( | |
| outputs.logits_per_text.shape, | |
| torch.Size((inputs.input_ids.shape[0], inputs.pixel_values.shape[0])), | |
| ) | |
| expected_logits = torch.tensor([[9.7093, 3.4679]], device=torch_device) | |
| self.assertTrue(torch.allclose(outputs.logits_per_image, expected_logits, atol=1e-3)) | |