Spaces:
Runtime error
Runtime error
update cap
Browse files
app.py
CHANGED
|
@@ -2,18 +2,16 @@ import os
|
|
| 2 |
import sys
|
| 3 |
from pathlib import Path
|
| 4 |
# os.system("cd transformers && pip install .")
|
| 5 |
-
os.system("cd multimodal && pip install .")
|
| 6 |
-
|
| 7 |
import numpy as np
|
| 8 |
import torch
|
| 9 |
from PIL import Image
|
| 10 |
import tempfile
|
| 11 |
|
| 12 |
-
|
| 13 |
import string
|
| 14 |
import cv2
|
| 15 |
|
| 16 |
-
|
| 17 |
import gradio as gr
|
| 18 |
import torch
|
| 19 |
from PIL import Image
|
|
@@ -52,34 +50,34 @@ flamingo, image_processor, tokenizer, vis_embed_size = create_model_and_transfor
|
|
| 52 |
enhance_data=False,
|
| 53 |
)
|
| 54 |
|
| 55 |
-
|
| 56 |
-
# checkpoint_path = "/home/aimos/huggingface/space/demo.pt"
|
| 57 |
checkpoint_path = hf_hub_download("chendl/compositional_test", "pythiaS.pt")
|
| 58 |
checkpoint = torch.load(checkpoint_path, map_location="cpu")["model_state_dict"]
|
| 59 |
model_state_dict = {}
|
| 60 |
for key in checkpoint.keys():
|
| 61 |
model_state_dict[key.replace("module.", "")] = checkpoint[key]
|
| 62 |
-
if "vision_encoder.logit_scale"in model_state_dict:
|
| 63 |
# previous checkpoint has some unnecessary weights
|
| 64 |
del model_state_dict["vision_encoder.logit_scale"]
|
| 65 |
del model_state_dict["vision_encoder.visual.proj"]
|
| 66 |
del model_state_dict["vision_encoder.visual.ln_post.weight"]
|
| 67 |
del model_state_dict["vision_encoder.visual.ln_post.bias"]
|
| 68 |
flamingo.load_state_dict(model_state_dict, strict=True)
|
| 69 |
-
chat = Chat(flamingo, image_processor, tokenizer, vis_embed_size
|
|
|
|
| 70 |
|
| 71 |
def get_outputs(
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
):
|
| 84 |
# and torch.cuda.amp.autocast(dtype=torch.float16)
|
| 85 |
with torch.inference_mode():
|
|
@@ -109,15 +107,13 @@ def get_outputs(
|
|
| 109 |
return outputs
|
| 110 |
|
| 111 |
|
| 112 |
-
|
| 113 |
-
|
| 114 |
def generate(
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
):
|
| 122 |
if image is None:
|
| 123 |
raise gr.Error("Please upload an image.")
|
|
@@ -138,7 +134,8 @@ def generate(
|
|
| 138 |
image = image.resize((224, 224))
|
| 139 |
batch_images = image_processor(image).unsqueeze(0).unsqueeze(1).unsqueeze(0)
|
| 140 |
if idx == 1:
|
| 141 |
-
prompt = [
|
|
|
|
| 142 |
bad_words_ids = None
|
| 143 |
max_generation_length = 5
|
| 144 |
else:
|
|
@@ -174,14 +171,14 @@ def generate(
|
|
| 174 |
boxes = outputs["boxes"]
|
| 175 |
scores = outputs["scores"]
|
| 176 |
if len(scores) > 0:
|
| 177 |
-
box = boxes[scores.argmax()]/224
|
| 178 |
print(f"{box}")
|
| 179 |
|
| 180 |
if idx == 1:
|
| 181 |
open_cv_image = np.array(image_ori)
|
| 182 |
# Convert RGB to BGR
|
| 183 |
open_cv_image = open_cv_image[:, :, ::-1].copy()
|
| 184 |
-
box = box*[width,height,width,height]
|
| 185 |
# for box in boxes:
|
| 186 |
open_cv_image = cv2.rectangle(open_cv_image, box[:2].astype(int), box[2:].astype(int), (255, 0, 0), 2)
|
| 187 |
out_image = Image.fromarray(cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB))
|
|
@@ -199,6 +196,7 @@ description = """<h3>This is the demo of Compositional-VLM. Upload your images a
|
|
| 199 |
article = """<div style='display:flex; gap: 0.25rem; '><a href='https://compositionalvlm.github.io/'><img src='https://img.shields.io/badge/Project-Page-Green'></a><a href='https://github.com/Vision-CAIR/MiniGPT-4'><img src='https://img.shields.io/badge/Github-Code-blue'></a><a href='https://github.com/TsuTikgiau/blip2-llm/blob/release_prepare/MiniGPT_4.pdf'><img src='https://img.shields.io/badge/Paper-PDF-red'></a></div>
|
| 200 |
"""
|
| 201 |
|
|
|
|
| 202 |
# TODO show examples below
|
| 203 |
|
| 204 |
# ========================================
|
|
@@ -217,16 +215,17 @@ def gradio_reset(chat_state, img_list):
|
|
| 217 |
|
| 218 |
def build_image(image):
|
| 219 |
if image is None:
|
| 220 |
-
return
|
| 221 |
# res = draw_bounding_boxes(image=image, boxes=boxes_to_draw, colors=color_to_draw, width=8)
|
| 222 |
from torchvision.transforms import ToPILImage
|
| 223 |
# res = ToPILImage()(res)
|
| 224 |
_, path = tempfile.mkstemp(suffix='.jpg', dir=TEMP_FILE_DIR)
|
| 225 |
image.save(path)
|
| 226 |
|
| 227 |
-
return
|
|
|
|
| 228 |
|
| 229 |
-
def upload_img(gr_img, text_input, chat_state,chatbot):
|
| 230 |
if gr_img is None:
|
| 231 |
return None, None, gr.update(interactive=True), chat_state, None
|
| 232 |
chat_state = []
|
|
@@ -235,42 +234,42 @@ def upload_img(gr_img, text_input, chat_state,chatbot):
|
|
| 235 |
chatbot = chatbot + [[(path,), None]]
|
| 236 |
llm_message = chat.upload_img(gr_img, chat_state, img_list)
|
| 237 |
return gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(
|
| 238 |
-
value="Start Chatting", interactive=False), chat_state, img_list,chatbot
|
| 239 |
|
| 240 |
|
| 241 |
-
def gradio_ask(user_message, chatbot, chat_state,radio):
|
| 242 |
if len(user_message) == 0:
|
| 243 |
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
|
| 244 |
|
| 245 |
-
|
| 246 |
-
chat.ask(user_message, chat_state,radio)
|
| 247 |
chatbot = chatbot + [[user_message, None]]
|
| 248 |
return chatbot, chat_state
|
| 249 |
|
| 250 |
|
| 251 |
-
def gradio_answer(chatbot, chat_state, img_list,
|
| 252 |
image = None
|
| 253 |
-
llm_message,image = \
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
chatbot[-1][1] = llm_message
|
| 258 |
-
if chat_state[-1]["from"]=="gpt":
|
| 259 |
chat_state[-1]["value"] = llm_message
|
| 260 |
-
if image==None:
|
| 261 |
return "", chatbot, chat_state, img_list
|
| 262 |
else:
|
| 263 |
path = build_image(image)
|
| 264 |
-
chatbot = chatbot + [[None,(path,)]]
|
| 265 |
return "", chatbot, chat_state, img_list
|
| 266 |
|
|
|
|
| 267 |
task_template = {
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
|
| 275 |
with gr.Blocks() as demo:
|
| 276 |
gr.Markdown(title)
|
|
@@ -310,24 +309,25 @@ with gr.Blocks() as demo:
|
|
| 310 |
img_list = gr.State()
|
| 311 |
chatbot = gr.Chatbot(label='Compositional-VLM')
|
| 312 |
|
| 313 |
-
|
| 314 |
# template = gr.Textbox(label='Template', show_label=True, lines=1, interactive=False,
|
| 315 |
# value='Provide a comprehensive description of the image <image> and specify the positions of any mentioned objects in square brackets.')
|
| 316 |
# text_input = gr.Textbox(label='<question>', show_label=True, placeholder="Please upload your image first, then input...", lines=3,
|
| 317 |
# value=None, visible=False, interactive=False)
|
| 318 |
|
| 319 |
-
text_input = gr.Textbox(label='User', placeholder='Please upload your image first, then input...',
|
|
|
|
| 320 |
|
| 321 |
-
upload_button.click(upload_img, [image, text_input, chat_state,chatbot],
|
| 322 |
-
[image, text_input, upload_button, chat_state, img_list,chatbot])
|
| 323 |
|
| 324 |
-
text_input.submit(gradio_ask, [text_input, chatbot, chat_state,radio], [chatbot, chat_state]).then(
|
| 325 |
-
gradio_answer, [chatbot, chat_state, img_list,
|
|
|
|
| 326 |
)
|
| 327 |
clear.click(gradio_reset, [chat_state, img_list], [chatbot, image, text_input, upload_button, chat_state, img_list],
|
| 328 |
queue=False)
|
| 329 |
|
| 330 |
-
demo.launch(
|
| 331 |
#
|
| 332 |
# with gr.Blocks() as demo:
|
| 333 |
# gr.Markdown(
|
|
|
|
| 2 |
import sys
|
| 3 |
from pathlib import Path
|
| 4 |
# os.system("cd transformers && pip install .")
|
| 5 |
+
os.system("cd multimodal && pip install -e .")
|
| 6 |
+
|
| 7 |
import numpy as np
|
| 8 |
import torch
|
| 9 |
from PIL import Image
|
| 10 |
import tempfile
|
| 11 |
|
|
|
|
| 12 |
import string
|
| 13 |
import cv2
|
| 14 |
|
|
|
|
| 15 |
import gradio as gr
|
| 16 |
import torch
|
| 17 |
from PIL import Image
|
|
|
|
| 50 |
enhance_data=False,
|
| 51 |
)
|
| 52 |
|
| 53 |
+
model_name = "pythiaS"
|
|
|
|
| 54 |
checkpoint_path = hf_hub_download("chendl/compositional_test", "pythiaS.pt")
|
| 55 |
checkpoint = torch.load(checkpoint_path, map_location="cpu")["model_state_dict"]
|
| 56 |
model_state_dict = {}
|
| 57 |
for key in checkpoint.keys():
|
| 58 |
model_state_dict[key.replace("module.", "")] = checkpoint[key]
|
| 59 |
+
if "vision_encoder.logit_scale" in model_state_dict:
|
| 60 |
# previous checkpoint has some unnecessary weights
|
| 61 |
del model_state_dict["vision_encoder.logit_scale"]
|
| 62 |
del model_state_dict["vision_encoder.visual.proj"]
|
| 63 |
del model_state_dict["vision_encoder.visual.ln_post.weight"]
|
| 64 |
del model_state_dict["vision_encoder.visual.ln_post.bias"]
|
| 65 |
flamingo.load_state_dict(model_state_dict, strict=True)
|
| 66 |
+
chat = Chat(flamingo, image_processor, tokenizer, vis_embed_size)
|
| 67 |
+
|
| 68 |
|
| 69 |
def get_outputs(
|
| 70 |
+
model,
|
| 71 |
+
batch_images,
|
| 72 |
+
attention_mask,
|
| 73 |
+
max_generation_length,
|
| 74 |
+
min_generation_length,
|
| 75 |
+
num_beams,
|
| 76 |
+
length_penalty,
|
| 77 |
+
input_ids,
|
| 78 |
+
image_start_index_list=None,
|
| 79 |
+
image_nums=None,
|
| 80 |
+
bad_words_ids=None,
|
| 81 |
):
|
| 82 |
# and torch.cuda.amp.autocast(dtype=torch.float16)
|
| 83 |
with torch.inference_mode():
|
|
|
|
| 107 |
return outputs
|
| 108 |
|
| 109 |
|
|
|
|
|
|
|
| 110 |
def generate(
|
| 111 |
+
idx,
|
| 112 |
+
image,
|
| 113 |
+
text,
|
| 114 |
+
vis_embed_size=256,
|
| 115 |
+
rank=0,
|
| 116 |
+
world_size=1,
|
| 117 |
):
|
| 118 |
if image is None:
|
| 119 |
raise gr.Error("Please upload an image.")
|
|
|
|
| 134 |
image = image.resize((224, 224))
|
| 135 |
batch_images = image_processor(image).unsqueeze(0).unsqueeze(1).unsqueeze(0)
|
| 136 |
if idx == 1:
|
| 137 |
+
prompt = [
|
| 138 |
+
f"{tokenizer.bos_token}<|#image#|>{tokenizer.pad_token * vis_embed_size}<|#endofimage#|><|#object#|> {text.rstrip('.').strip()}<|#endofobject#|><|#visual#|>"]
|
| 139 |
bad_words_ids = None
|
| 140 |
max_generation_length = 5
|
| 141 |
else:
|
|
|
|
| 171 |
boxes = outputs["boxes"]
|
| 172 |
scores = outputs["scores"]
|
| 173 |
if len(scores) > 0:
|
| 174 |
+
box = boxes[scores.argmax()] / 224
|
| 175 |
print(f"{box}")
|
| 176 |
|
| 177 |
if idx == 1:
|
| 178 |
open_cv_image = np.array(image_ori)
|
| 179 |
# Convert RGB to BGR
|
| 180 |
open_cv_image = open_cv_image[:, :, ::-1].copy()
|
| 181 |
+
box = box * [width, height, width, height]
|
| 182 |
# for box in boxes:
|
| 183 |
open_cv_image = cv2.rectangle(open_cv_image, box[:2].astype(int), box[2:].astype(int), (255, 0, 0), 2)
|
| 184 |
out_image = Image.fromarray(cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB))
|
|
|
|
| 196 |
article = """<div style='display:flex; gap: 0.25rem; '><a href='https://compositionalvlm.github.io/'><img src='https://img.shields.io/badge/Project-Page-Green'></a><a href='https://github.com/Vision-CAIR/MiniGPT-4'><img src='https://img.shields.io/badge/Github-Code-blue'></a><a href='https://github.com/TsuTikgiau/blip2-llm/blob/release_prepare/MiniGPT_4.pdf'><img src='https://img.shields.io/badge/Paper-PDF-red'></a></div>
|
| 197 |
"""
|
| 198 |
|
| 199 |
+
|
| 200 |
# TODO show examples below
|
| 201 |
|
| 202 |
# ========================================
|
|
|
|
| 215 |
|
| 216 |
def build_image(image):
|
| 217 |
if image is None:
|
| 218 |
+
return None
|
| 219 |
# res = draw_bounding_boxes(image=image, boxes=boxes_to_draw, colors=color_to_draw, width=8)
|
| 220 |
from torchvision.transforms import ToPILImage
|
| 221 |
# res = ToPILImage()(res)
|
| 222 |
_, path = tempfile.mkstemp(suffix='.jpg', dir=TEMP_FILE_DIR)
|
| 223 |
image.save(path)
|
| 224 |
|
| 225 |
+
return path
|
| 226 |
+
|
| 227 |
|
| 228 |
+
def upload_img(gr_img, text_input, chat_state, chatbot):
|
| 229 |
if gr_img is None:
|
| 230 |
return None, None, gr.update(interactive=True), chat_state, None
|
| 231 |
chat_state = []
|
|
|
|
| 234 |
chatbot = chatbot + [[(path,), None]]
|
| 235 |
llm_message = chat.upload_img(gr_img, chat_state, img_list)
|
| 236 |
return gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(
|
| 237 |
+
value="Start Chatting", interactive=False), chat_state, img_list, chatbot
|
| 238 |
|
| 239 |
|
| 240 |
+
def gradio_ask(user_message, chatbot, chat_state, radio):
|
| 241 |
if len(user_message) == 0:
|
| 242 |
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
|
| 243 |
|
| 244 |
+
chat.ask(user_message, chat_state, radio, model_name)
|
|
|
|
| 245 |
chatbot = chatbot + [[user_message, None]]
|
| 246 |
return chatbot, chat_state
|
| 247 |
|
| 248 |
|
| 249 |
+
def gradio_answer(chatbot, chat_state, img_list, radio, text, num_beams, temperature):
|
| 250 |
image = None
|
| 251 |
+
llm_message, image = \
|
| 252 |
+
chat.answer(conv=chat_state, img_list=img_list, max_new_tokens=300, num_beams=1, temperature=temperature,
|
| 253 |
+
max_length=2000, radio=radio, text_input=text, model_name=model_name)
|
| 254 |
+
|
| 255 |
chatbot[-1][1] = llm_message
|
| 256 |
+
if chat_state[-1]["from"] == "gpt":
|
| 257 |
chat_state[-1]["value"] = llm_message
|
| 258 |
+
if image == None:
|
| 259 |
return "", chatbot, chat_state, img_list
|
| 260 |
else:
|
| 261 |
path = build_image(image)
|
| 262 |
+
chatbot = chatbot + [[None, (path,)]]
|
| 263 |
return "", chatbot, chat_state, img_list
|
| 264 |
|
| 265 |
+
|
| 266 |
task_template = {
|
| 267 |
+
"Cap": "Summarize the content of the photo <image>.",
|
| 268 |
+
"VQA": "For this image <image>, I want a simple and direct answer to my question: <question>",
|
| 269 |
+
"REC": "Can you point out <expr> in the image <image> and provide the coordinates of its location?",
|
| 270 |
+
"GC": "Can you give me a description of the region <boxes> in image <image>?",
|
| 271 |
+
"Advanced": "<question>",
|
| 272 |
+
}
|
| 273 |
|
| 274 |
with gr.Blocks() as demo:
|
| 275 |
gr.Markdown(title)
|
|
|
|
| 309 |
img_list = gr.State()
|
| 310 |
chatbot = gr.Chatbot(label='Compositional-VLM')
|
| 311 |
|
|
|
|
| 312 |
# template = gr.Textbox(label='Template', show_label=True, lines=1, interactive=False,
|
| 313 |
# value='Provide a comprehensive description of the image <image> and specify the positions of any mentioned objects in square brackets.')
|
| 314 |
# text_input = gr.Textbox(label='<question>', show_label=True, placeholder="Please upload your image first, then input...", lines=3,
|
| 315 |
# value=None, visible=False, interactive=False)
|
| 316 |
|
| 317 |
+
text_input = gr.Textbox(label='User', placeholder='Please upload your image first, then input...',
|
| 318 |
+
interactive=False)
|
| 319 |
|
| 320 |
+
upload_button.click(upload_img, [image, text_input, chat_state, chatbot],
|
| 321 |
+
[image, text_input, upload_button, chat_state, img_list, chatbot])
|
| 322 |
|
| 323 |
+
text_input.submit(gradio_ask, [text_input, chatbot, chat_state, radio], [chatbot, chat_state]).then(
|
| 324 |
+
gradio_answer, [chatbot, chat_state, img_list, radio, text_input, num_beams, temperature],
|
| 325 |
+
[text_input, chatbot, chat_state, img_list]
|
| 326 |
)
|
| 327 |
clear.click(gradio_reset, [chat_state, img_list], [chatbot, image, text_input, upload_button, chat_state, img_list],
|
| 328 |
queue=False)
|
| 329 |
|
| 330 |
+
demo.launch(share=True)
|
| 331 |
#
|
| 332 |
# with gr.Blocks() as demo:
|
| 333 |
# gr.Markdown(
|
multimodal/open_flamingo/chat/conversation.py
CHANGED
|
@@ -22,6 +22,7 @@ from huggingface_hub import hf_hub_download, login
|
|
| 22 |
from open_flamingo.src.factory import create_model_and_transforms
|
| 23 |
from open_flamingo.eval.task.caption_chat import captioner
|
| 24 |
|
|
|
|
| 25 |
class SeparatorStyle(Enum):
|
| 26 |
"""Different separator style."""
|
| 27 |
SINGLE = auto()
|
|
@@ -125,18 +126,19 @@ CONV_VISION = Conversation(
|
|
| 125 |
sep="###",
|
| 126 |
)
|
| 127 |
|
|
|
|
| 128 |
def get_outputs(
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
):
|
| 141 |
# and torch.cuda.amp.autocast(dtype=torch.float16)
|
| 142 |
with torch.inference_mode():
|
|
@@ -165,16 +167,17 @@ def get_outputs(
|
|
| 165 |
|
| 166 |
return outputs
|
| 167 |
|
|
|
|
| 168 |
def generate(
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
):
|
| 179 |
if image is None:
|
| 180 |
raise gr.Error("Please upload an image.")
|
|
@@ -195,7 +198,8 @@ def generate(
|
|
| 195 |
image = image.resize((224, 224))
|
| 196 |
batch_images = image_processor(image).unsqueeze(0).unsqueeze(1).unsqueeze(0)
|
| 197 |
if idx == 1:
|
| 198 |
-
prompt = [
|
|
|
|
| 199 |
bad_words_ids = None
|
| 200 |
max_generation_length = 5
|
| 201 |
else:
|
|
@@ -231,15 +235,14 @@ def generate(
|
|
| 231 |
boxes = outputs["boxes"]
|
| 232 |
scores = outputs["scores"]
|
| 233 |
if len(scores) > 0:
|
| 234 |
-
box = boxes[scores.argmax()]/224
|
| 235 |
print(f"{box}")
|
| 236 |
|
| 237 |
-
|
| 238 |
-
if len(boxes)>0:
|
| 239 |
open_cv_image = np.array(image_ori)
|
| 240 |
# Convert RGB to BGR
|
| 241 |
open_cv_image = open_cv_image[:, :, ::-1].copy()
|
| 242 |
-
box = box*[width,height,width,height]
|
| 243 |
# for box in boxes:
|
| 244 |
open_cv_image = cv2.rectangle(open_cv_image, box[:2].astype(int), box[2:].astype(int), (255, 0, 0), 2)
|
| 245 |
out_image = Image.fromarray(cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB))
|
|
@@ -248,6 +251,7 @@ def generate(
|
|
| 248 |
gen_text = tokenizer.batch_decode(outputs)
|
| 249 |
return (f"{gen_text}")
|
| 250 |
|
|
|
|
| 251 |
def preprocess_conv(data):
|
| 252 |
conversation = ""
|
| 253 |
BEGIN_SIGNAL = "### "
|
|
@@ -263,14 +267,16 @@ def preprocess_conv(data):
|
|
| 263 |
conversation += (BEGIN_SIGNAL + from_str + ": " + d["value"] + END_SIGNAL)
|
| 264 |
return conversation
|
| 265 |
|
|
|
|
| 266 |
def preprocess_image(sample, image_processor):
|
| 267 |
image = image_processor(sample)
|
| 268 |
if isinstance(image, transformers.image_processing_utils.BatchFeature):
|
| 269 |
image = torch.tensor(image["pixel_values"][0])
|
| 270 |
return image
|
| 271 |
|
|
|
|
| 272 |
class Chat:
|
| 273 |
-
def __init__(self, model, vis_processor, tokenizer, vis_embed_size
|
| 274 |
self.model = model
|
| 275 |
self.vis_processor = vis_processor
|
| 276 |
self.tokenizer = tokenizer
|
|
@@ -280,34 +286,41 @@ class Chat:
|
|
| 280 |
# torch.tensor([2277, 29937]).to(self.device)] # '###' can be encoded in two different ways.
|
| 281 |
# self.stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
|
| 282 |
|
| 283 |
-
def ask(self, text, conv,radio):
|
| 284 |
-
if
|
| 285 |
-
conv.append({
|
| 286 |
-
"from": "human",
|
| 287 |
-
"value": "",
|
| 288 |
-
})
|
| 289 |
-
elif radio in ["VQA"]:
|
| 290 |
-
conv.append({
|
| 291 |
-
"from": "human",
|
| 292 |
-
"value": f"Answer the question using a single word or phrase. {text}",
|
| 293 |
-
})
|
| 294 |
-
elif radio in ["REC"]:
|
| 295 |
-
conv.append({
|
| 296 |
-
"from": "human",
|
| 297 |
-
"value": f"Please provide the bounding box coordinate of the region this sentence describes: {text}.",
|
| 298 |
-
})
|
| 299 |
-
else:
|
| 300 |
conv.append({
|
| 301 |
"from": "human",
|
| 302 |
"value": text,
|
| 303 |
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 304 |
# if len(conv.messages) > 0 and conv.messages[-1][0] == conv.roles[0] \
|
| 305 |
# and conv.messages[-1][1][-6:] == '</Img>': # last message is image.
|
| 306 |
# conv.messages[-1][1] = ' '.join([conv.messages[-1][1], text])
|
| 307 |
# else:
|
| 308 |
# conv.append_message(conv.roles[0], text)
|
| 309 |
|
| 310 |
-
def answer(self, conv, img_list, radio, text_input, max_new_tokens=200, num_beams=5, min_length=1,
|
|
|
|
| 311 |
repetition_penalty=1.0, length_penalty=1, temperature=1, max_length=2000):
|
| 312 |
# conv.append_message(conv.roles[1], None)
|
| 313 |
# embs = self.get_context_emb(conv, img_list)
|
|
@@ -358,10 +371,10 @@ class Chat:
|
|
| 358 |
image = image.resize((size, size))
|
| 359 |
print(f"image size: {image.size}")
|
| 360 |
batch_images = preprocess_image(image, self.vis_processor).unsqueeze(0).unsqueeze(1).unsqueeze(0)
|
| 361 |
-
|
| 362 |
# conversation = []
|
| 363 |
human_sentence = None
|
| 364 |
-
if radio in ["Cap","VQA"]:
|
| 365 |
conv.append({
|
| 366 |
"from": "gpt",
|
| 367 |
"value": "",
|
|
@@ -375,9 +388,9 @@ class Chat:
|
|
| 375 |
)
|
| 376 |
else:
|
| 377 |
conv.append({
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
# while True:
|
| 382 |
# human_sentence = input("### Human: ")
|
| 383 |
# if human_sentence == "#end#":
|
|
@@ -390,7 +403,11 @@ class Chat:
|
|
| 390 |
# "from": "gpt",
|
| 391 |
# "value": "",
|
| 392 |
# })
|
| 393 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 394 |
caption = f"<|#image#|>{self.tokenizer.pad_token * self.vis_embed_size}<|#endofimage#|>{text}"
|
| 395 |
encodings = self.tokenizer(
|
| 396 |
caption,
|
|
@@ -406,7 +423,8 @@ class Chat:
|
|
| 406 |
image_nums = [1] * len(input_ids)
|
| 407 |
added_bbox_list = []
|
| 408 |
if radio in ["Cap"]:
|
| 409 |
-
output_text, out_image = captioner(self.model,self.tokenizer,image_ori,batch_images,input_ids,
|
|
|
|
| 410 |
else:
|
| 411 |
with torch.inference_mode():
|
| 412 |
text_outputs = self.model.generate(
|
|
@@ -439,7 +457,7 @@ class Chat:
|
|
| 439 |
print(f"{box}")
|
| 440 |
out_image = None
|
| 441 |
|
| 442 |
-
if len(boxes)>0:
|
| 443 |
width, height = image_ori.size
|
| 444 |
open_cv_image = np.array(image_ori)
|
| 445 |
# Convert RGB to BGR
|
|
@@ -449,7 +467,6 @@ class Chat:
|
|
| 449 |
open_cv_image = cv2.rectangle(open_cv_image, box[:2].astype(int), box[2:].astype(int), (255, 0, 0), 2)
|
| 450 |
out_image = Image.fromarray(cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB))
|
| 451 |
|
| 452 |
-
|
| 453 |
# output_token = outputs[0, input_ids.shape[1]:]
|
| 454 |
# output_text = tokenizer.decode(output_token, skip_special_tokens=True).strip()
|
| 455 |
# conv[-1]["value"] = output_text
|
|
@@ -499,16 +516,17 @@ class Chat:
|
|
| 499 |
# mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [seg_embs[-1]]
|
| 500 |
# mixed_embs = torch.cat(mixed_embs, dim=1)
|
| 501 |
# return mixed_embs
|
| 502 |
-
|
|
|
|
| 503 |
def evaluate_exp(
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
):
|
| 513 |
media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
|
| 514 |
box_token_id = tokenizer("<|#box#|>", add_special_tokens=False)["input_ids"][-1]
|
|
@@ -541,7 +559,7 @@ def evaluate_exp(
|
|
| 541 |
"value": "",
|
| 542 |
})
|
| 543 |
text = preprocess_conv(conversation).strip()
|
| 544 |
-
caption = f"<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|>{text}"
|
| 545 |
encodings = tokenizer(
|
| 546 |
caption,
|
| 547 |
padding="longest",
|
|
@@ -569,3 +587,4 @@ def evaluate_exp(
|
|
| 569 |
|
| 570 |
|
| 571 |
|
|
|
|
|
|
| 22 |
from open_flamingo.src.factory import create_model_and_transforms
|
| 23 |
from open_flamingo.eval.task.caption_chat import captioner
|
| 24 |
|
| 25 |
+
|
| 26 |
class SeparatorStyle(Enum):
|
| 27 |
"""Different separator style."""
|
| 28 |
SINGLE = auto()
|
|
|
|
| 126 |
sep="###",
|
| 127 |
)
|
| 128 |
|
| 129 |
+
|
| 130 |
def get_outputs(
|
| 131 |
+
model,
|
| 132 |
+
batch_images,
|
| 133 |
+
attention_mask,
|
| 134 |
+
max_generation_length,
|
| 135 |
+
min_generation_length,
|
| 136 |
+
num_beams,
|
| 137 |
+
length_penalty,
|
| 138 |
+
input_ids,
|
| 139 |
+
image_start_index_list=None,
|
| 140 |
+
image_nums=None,
|
| 141 |
+
bad_words_ids=None,
|
| 142 |
):
|
| 143 |
# and torch.cuda.amp.autocast(dtype=torch.float16)
|
| 144 |
with torch.inference_mode():
|
|
|
|
| 167 |
|
| 168 |
return outputs
|
| 169 |
|
| 170 |
+
|
| 171 |
def generate(
|
| 172 |
+
idx,
|
| 173 |
+
image,
|
| 174 |
+
text,
|
| 175 |
+
image_processor,
|
| 176 |
+
tokenizer,
|
| 177 |
+
flamingo,
|
| 178 |
+
vis_embed_size=256,
|
| 179 |
+
rank=0,
|
| 180 |
+
world_size=1,
|
| 181 |
):
|
| 182 |
if image is None:
|
| 183 |
raise gr.Error("Please upload an image.")
|
|
|
|
| 198 |
image = image.resize((224, 224))
|
| 199 |
batch_images = image_processor(image).unsqueeze(0).unsqueeze(1).unsqueeze(0)
|
| 200 |
if idx == 1:
|
| 201 |
+
prompt = [
|
| 202 |
+
f"{tokenizer.bos_token}<|#image#|>{tokenizer.pad_token * vis_embed_size}<|#endofimage#|><|#object#|> {text.rstrip('.').strip()}<|#endofobject#|><|#visual#|>"]
|
| 203 |
bad_words_ids = None
|
| 204 |
max_generation_length = 5
|
| 205 |
else:
|
|
|
|
| 235 |
boxes = outputs["boxes"]
|
| 236 |
scores = outputs["scores"]
|
| 237 |
if len(scores) > 0:
|
| 238 |
+
box = boxes[scores.argmax()] / 224
|
| 239 |
print(f"{box}")
|
| 240 |
|
| 241 |
+
if len(boxes) > 0:
|
|
|
|
| 242 |
open_cv_image = np.array(image_ori)
|
| 243 |
# Convert RGB to BGR
|
| 244 |
open_cv_image = open_cv_image[:, :, ::-1].copy()
|
| 245 |
+
box = box * [width, height, width, height]
|
| 246 |
# for box in boxes:
|
| 247 |
open_cv_image = cv2.rectangle(open_cv_image, box[:2].astype(int), box[2:].astype(int), (255, 0, 0), 2)
|
| 248 |
out_image = Image.fromarray(cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB))
|
|
|
|
| 251 |
gen_text = tokenizer.batch_decode(outputs)
|
| 252 |
return (f"{gen_text}")
|
| 253 |
|
| 254 |
+
|
| 255 |
def preprocess_conv(data):
|
| 256 |
conversation = ""
|
| 257 |
BEGIN_SIGNAL = "### "
|
|
|
|
| 267 |
conversation += (BEGIN_SIGNAL + from_str + ": " + d["value"] + END_SIGNAL)
|
| 268 |
return conversation
|
| 269 |
|
| 270 |
+
|
| 271 |
def preprocess_image(sample, image_processor):
|
| 272 |
image = image_processor(sample)
|
| 273 |
if isinstance(image, transformers.image_processing_utils.BatchFeature):
|
| 274 |
image = torch.tensor(image["pixel_values"][0])
|
| 275 |
return image
|
| 276 |
|
| 277 |
+
|
| 278 |
class Chat:
|
| 279 |
+
def __init__(self, model, vis_processor, tokenizer, vis_embed_size):
|
| 280 |
self.model = model
|
| 281 |
self.vis_processor = vis_processor
|
| 282 |
self.tokenizer = tokenizer
|
|
|
|
| 286 |
# torch.tensor([2277, 29937]).to(self.device)] # '###' can be encoded in two different ways.
|
| 287 |
# self.stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
|
| 288 |
|
| 289 |
+
def ask(self, text, conv, radio, model_name):
|
| 290 |
+
if "pythiaS" in model_name:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
conv.append({
|
| 292 |
"from": "human",
|
| 293 |
"value": text,
|
| 294 |
})
|
| 295 |
+
else:
|
| 296 |
+
if radio in ["Cap"]:
|
| 297 |
+
conv.append({
|
| 298 |
+
"from": "human",
|
| 299 |
+
"value": "",
|
| 300 |
+
})
|
| 301 |
+
elif radio in ["VQA"]:
|
| 302 |
+
conv.append({
|
| 303 |
+
"from": "human",
|
| 304 |
+
"value": f"Answer the question using a single word or phrase. {text}",
|
| 305 |
+
})
|
| 306 |
+
elif radio in ["REC"]:
|
| 307 |
+
conv.append({
|
| 308 |
+
"from": "human",
|
| 309 |
+
"value": f"Please provide the bounding box coordinate of the region this sentence describes: {text}.",
|
| 310 |
+
})
|
| 311 |
+
else:
|
| 312 |
+
conv.append({
|
| 313 |
+
"from": "human",
|
| 314 |
+
"value": text,
|
| 315 |
+
})
|
| 316 |
# if len(conv.messages) > 0 and conv.messages[-1][0] == conv.roles[0] \
|
| 317 |
# and conv.messages[-1][1][-6:] == '</Img>': # last message is image.
|
| 318 |
# conv.messages[-1][1] = ' '.join([conv.messages[-1][1], text])
|
| 319 |
# else:
|
| 320 |
# conv.append_message(conv.roles[0], text)
|
| 321 |
|
| 322 |
+
def answer(self, conv, img_list, radio, text_input, model_name, max_new_tokens=200, num_beams=5, min_length=1,
|
| 323 |
+
top_p=0.9,
|
| 324 |
repetition_penalty=1.0, length_penalty=1, temperature=1, max_length=2000):
|
| 325 |
# conv.append_message(conv.roles[1], None)
|
| 326 |
# embs = self.get_context_emb(conv, img_list)
|
|
|
|
| 371 |
image = image.resize((size, size))
|
| 372 |
print(f"image size: {image.size}")
|
| 373 |
batch_images = preprocess_image(image, self.vis_processor).unsqueeze(0).unsqueeze(1).unsqueeze(0)
|
| 374 |
+
|
| 375 |
# conversation = []
|
| 376 |
human_sentence = None
|
| 377 |
+
if radio in ["Cap", "VQA"]:
|
| 378 |
conv.append({
|
| 379 |
"from": "gpt",
|
| 380 |
"value": "",
|
|
|
|
| 388 |
)
|
| 389 |
else:
|
| 390 |
conv.append({
|
| 391 |
+
"from": "gpt",
|
| 392 |
+
"value": "",
|
| 393 |
+
})
|
| 394 |
# while True:
|
| 395 |
# human_sentence = input("### Human: ")
|
| 396 |
# if human_sentence == "#end#":
|
|
|
|
| 403 |
# "from": "gpt",
|
| 404 |
# "value": "",
|
| 405 |
# })
|
| 406 |
+
if "pythiaS" in model_name:
|
| 407 |
+
text = conv[-1]["value"].strip()
|
| 408 |
+
print(text)
|
| 409 |
+
else:
|
| 410 |
+
text = preprocess_conv(conv).strip()
|
| 411 |
caption = f"<|#image#|>{self.tokenizer.pad_token * self.vis_embed_size}<|#endofimage#|>{text}"
|
| 412 |
encodings = self.tokenizer(
|
| 413 |
caption,
|
|
|
|
| 423 |
image_nums = [1] * len(input_ids)
|
| 424 |
added_bbox_list = []
|
| 425 |
if radio in ["Cap"]:
|
| 426 |
+
output_text, out_image = captioner(self.model, self.tokenizer, image_ori, batch_images, input_ids,
|
| 427 |
+
attention_mask, image_start_index_list, image_nums, added_bbox_list)
|
| 428 |
else:
|
| 429 |
with torch.inference_mode():
|
| 430 |
text_outputs = self.model.generate(
|
|
|
|
| 457 |
print(f"{box}")
|
| 458 |
out_image = None
|
| 459 |
|
| 460 |
+
if len(boxes) > 0:
|
| 461 |
width, height = image_ori.size
|
| 462 |
open_cv_image = np.array(image_ori)
|
| 463 |
# Convert RGB to BGR
|
|
|
|
| 467 |
open_cv_image = cv2.rectangle(open_cv_image, box[:2].astype(int), box[2:].astype(int), (255, 0, 0), 2)
|
| 468 |
out_image = Image.fromarray(cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB))
|
| 469 |
|
|
|
|
| 470 |
# output_token = outputs[0, input_ids.shape[1]:]
|
| 471 |
# output_text = tokenizer.decode(output_token, skip_special_tokens=True).strip()
|
| 472 |
# conv[-1]["value"] = output_text
|
|
|
|
| 516 |
# mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [seg_embs[-1]]
|
| 517 |
# mixed_embs = torch.cat(mixed_embs, dim=1)
|
| 518 |
# return mixed_embs
|
| 519 |
+
|
| 520 |
+
|
| 521 |
def evaluate_exp(
|
| 522 |
+
model,
|
| 523 |
+
tokenizer,
|
| 524 |
+
image_processor,
|
| 525 |
+
vis_embed_size=None,
|
| 526 |
+
rank=0,
|
| 527 |
+
world_size=1,
|
| 528 |
+
id=0,
|
| 529 |
+
add_visual=True,
|
| 530 |
):
|
| 531 |
media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
|
| 532 |
box_token_id = tokenizer("<|#box#|>", add_special_tokens=False)["input_ids"][-1]
|
|
|
|
| 559 |
"value": "",
|
| 560 |
})
|
| 561 |
text = preprocess_conv(conversation).strip()
|
| 562 |
+
caption = f"<|#image#|>{tokenizer.pad_token * vis_embed_size}<|#endofimage#|>{text}"
|
| 563 |
encodings = tokenizer(
|
| 564 |
caption,
|
| 565 |
padding="longest",
|
|
|
|
| 587 |
|
| 588 |
|
| 589 |
|
| 590 |
+
|
multimodal/open_flamingo/eval/task/caption_chat.py
CHANGED
|
@@ -51,7 +51,7 @@ def prepare_batch_images(batch, image_processor):
|
|
| 51 |
|
| 52 |
|
| 53 |
def captioner(
|
| 54 |
-
model,tokenizer,image_ori,batch_images,input_ids,attention_mask,image_start_index_list,image_nums,added_bbox_list,debug=
|
| 55 |
"""Evaluate a model on COCO dataset.
|
| 56 |
Returns:
|
| 57 |
float: CIDEr score
|
|
@@ -73,10 +73,23 @@ def captioner(
|
|
| 73 |
object_token = "<|#object#|>"
|
| 74 |
ori_prompt_length = len(input_ids[0])
|
| 75 |
have_prebox = False
|
|
|
|
| 76 |
while True:
|
| 77 |
batch_images = batch_images
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
image_start_index_list = image_start_index_list
|
| 81 |
image_nums = image_nums
|
| 82 |
if debug:
|
|
@@ -148,6 +161,7 @@ def captioner(
|
|
| 148 |
prompt += box_token + endofobject_token
|
| 149 |
if debug:
|
| 150 |
print("after inserting visual---->", prompt)
|
|
|
|
| 151 |
else:
|
| 152 |
import numpy as np
|
| 153 |
import cv2
|
|
@@ -165,8 +179,8 @@ def captioner(
|
|
| 165 |
if debug:
|
| 166 |
print("after inserting previsual---->", prompt)
|
| 167 |
else:
|
| 168 |
-
if debug:
|
| 169 |
-
|
| 170 |
prompt = tokenizer.decode(outputs[0, :-2].clone()[0])
|
| 171 |
else:
|
| 172 |
break
|
|
@@ -414,4 +428,5 @@ def evaluate_coco_flickr(
|
|
| 414 |
metrics = {}
|
| 415 |
metrics["CIDEr"] = 0.0
|
| 416 |
|
|
|
|
| 417 |
return metrics["CIDEr"]
|
|
|
|
| 51 |
|
| 52 |
|
| 53 |
def captioner(
|
| 54 |
+
model,tokenizer,image_ori,batch_images,input_ids,attention_mask,image_start_index_list,image_nums,added_bbox_list,debug=True):
|
| 55 |
"""Evaluate a model on COCO dataset.
|
| 56 |
Returns:
|
| 57 |
float: CIDEr score
|
|
|
|
| 73 |
object_token = "<|#object#|>"
|
| 74 |
ori_prompt_length = len(input_ids[0])
|
| 75 |
have_prebox = False
|
| 76 |
+
prompt = None
|
| 77 |
while True:
|
| 78 |
batch_images = batch_images
|
| 79 |
+
if prompt == None:
|
| 80 |
+
input_ids = input_ids
|
| 81 |
+
attention_mask = attention_mask
|
| 82 |
+
else:
|
| 83 |
+
|
| 84 |
+
encodings = tokenizer(
|
| 85 |
+
[prompt],
|
| 86 |
+
padding="longest",
|
| 87 |
+
truncation=True,
|
| 88 |
+
return_tensors="pt",
|
| 89 |
+
max_length=2000,
|
| 90 |
+
)
|
| 91 |
+
attention_mask = encodings["attention_mask"]
|
| 92 |
+
input_ids = encodings["input_ids"]
|
| 93 |
image_start_index_list = image_start_index_list
|
| 94 |
image_nums = image_nums
|
| 95 |
if debug:
|
|
|
|
| 161 |
prompt += box_token + endofobject_token
|
| 162 |
if debug:
|
| 163 |
print("after inserting visual---->", prompt)
|
| 164 |
+
|
| 165 |
else:
|
| 166 |
import numpy as np
|
| 167 |
import cv2
|
|
|
|
| 179 |
if debug:
|
| 180 |
print("after inserting previsual---->", prompt)
|
| 181 |
else:
|
| 182 |
+
# if debug:
|
| 183 |
+
# import pdb;pdb.set_trace()
|
| 184 |
prompt = tokenizer.decode(outputs[0, :-2].clone()[0])
|
| 185 |
else:
|
| 186 |
break
|
|
|
|
| 428 |
metrics = {}
|
| 429 |
metrics["CIDEr"] = 0.0
|
| 430 |
|
| 431 |
+
|
| 432 |
return metrics["CIDEr"]
|