Spaces:
Runtime error
Runtime error
update cap
Browse files- app.py +36 -10
- multimodal/open_flamingo/chat/conversation.py +0 -68
- multimodal/open_flamingo/eval/task/caption_chat.py +266 -111
app.py
CHANGED
|
@@ -2,7 +2,7 @@ import os
|
|
| 2 |
import sys
|
| 3 |
from pathlib import Path
|
| 4 |
# os.system("cd transformers && pip install .")
|
| 5 |
-
os.system("cd multimodal && pip install .")
|
| 6 |
os.system("cd multimodal/YOLOX && pip install .")
|
| 7 |
import numpy as np
|
| 8 |
import torch
|
|
@@ -233,21 +233,42 @@ def upload_img(gr_img, text_input, chat_state, chatbot):
|
|
| 233 |
path = build_image(gr_img)
|
| 234 |
chatbot = chatbot + [[(path,), None]]
|
| 235 |
llm_message = chat.upload_img(gr_img, chat_state, img_list)
|
| 236 |
-
return gr.update(interactive=False), gr.
|
| 237 |
value="Start Chatting", interactive=False), chat_state, img_list, chatbot
|
| 238 |
|
| 239 |
|
| 240 |
-
|
| 241 |
-
def gradio_ask(user_message, chatbot, chat_state,radio):
|
| 242 |
# if len(user_message) == 0:
|
| 243 |
# return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
|
| 244 |
|
| 245 |
-
|
| 246 |
-
chat.ask(user_message, chat_state,radio,model_name)
|
| 247 |
chatbot = chatbot + [[user_message, None]]
|
| 248 |
return chatbot, chat_state
|
| 249 |
|
| 250 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
def gradio_answer(chatbot, chat_state, img_list, radio, text, num_beams, temperature):
|
| 252 |
image = None
|
| 253 |
llm_message, image = \
|
|
@@ -325,10 +346,15 @@ with gr.Blocks() as demo:
|
|
| 325 |
# submit_button.click(gradio_ask, [text_input, chatbot, chat_state,radio], [chatbot, chat_state]).then(
|
| 326 |
# gradio_answer, [chatbot, chat_state, img_list, radio, text_input,num_beams, temperature], [text_input,chatbot, chat_state, img_list]
|
| 327 |
# )
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 332 |
clear.click(gradio_reset, [chat_state, img_list], [chatbot, image, text_input, upload_button, chat_state, img_list],
|
| 333 |
queue=False)
|
| 334 |
|
|
|
|
| 2 |
import sys
|
| 3 |
from pathlib import Path
|
| 4 |
# os.system("cd transformers && pip install .")
|
| 5 |
+
os.system("cd multimodal && pip install -e .")
|
| 6 |
os.system("cd multimodal/YOLOX && pip install .")
|
| 7 |
import numpy as np
|
| 8 |
import torch
|
|
|
|
| 233 |
path = build_image(gr_img)
|
| 234 |
chatbot = chatbot + [[(path,), None]]
|
| 235 |
llm_message = chat.upload_img(gr_img, chat_state, img_list)
|
| 236 |
+
return gr.update(interactive=False), gr.Textbox(placeholder='Type and press Enter', interactive=True), gr.update(
|
| 237 |
value="Start Chatting", interactive=False), chat_state, img_list, chatbot
|
| 238 |
|
| 239 |
|
| 240 |
+
def gradio_ask(user_message, chatbot, chat_state, radio):
|
|
|
|
| 241 |
# if len(user_message) == 0:
|
| 242 |
# return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
|
| 243 |
|
| 244 |
+
chat.ask(user_message, chat_state, radio, model_name)
|
|
|
|
| 245 |
chatbot = chatbot + [[user_message, None]]
|
| 246 |
return chatbot, chat_state
|
| 247 |
|
| 248 |
|
| 249 |
+
def generate_ans(user_message, chatbot, chat_state, img_list, radio, text, num_beams, temperature):
|
| 250 |
+
# if len(user_message) == 0:
|
| 251 |
+
# return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
|
| 252 |
+
|
| 253 |
+
chat.ask(user_message, chat_state, radio, model_name)
|
| 254 |
+
chatbot = chatbot + [[user_message, None]]
|
| 255 |
+
# return chatbot, chat_state
|
| 256 |
+
image = None
|
| 257 |
+
llm_message, image = \
|
| 258 |
+
chat.answer(conv=chat_state, img_list=img_list, max_new_tokens=300, num_beams=1, temperature=temperature,
|
| 259 |
+
max_length=2000, radio=radio, text_input=text, model_name=model_name)
|
| 260 |
+
|
| 261 |
+
chatbot[-1][1] = llm_message
|
| 262 |
+
if chat_state[-1]["from"] == "gpt":
|
| 263 |
+
chat_state[-1]["value"] = llm_message
|
| 264 |
+
if image == None:
|
| 265 |
+
return "", chatbot, chat_state, img_list
|
| 266 |
+
else:
|
| 267 |
+
path = build_image(image)
|
| 268 |
+
chatbot = chatbot + [[None, (path,)]]
|
| 269 |
+
return "", chatbot, chat_state, img_list
|
| 270 |
+
|
| 271 |
+
|
| 272 |
def gradio_answer(chatbot, chat_state, img_list, radio, text, num_beams, temperature):
|
| 273 |
image = None
|
| 274 |
llm_message, image = \
|
|
|
|
| 346 |
# submit_button.click(gradio_ask, [text_input, chatbot, chat_state,radio], [chatbot, chat_state]).then(
|
| 347 |
# gradio_answer, [chatbot, chat_state, img_list, radio, text_input,num_beams, temperature], [text_input,chatbot, chat_state, img_list]
|
| 348 |
# )
|
| 349 |
+
|
| 350 |
+
text_input.submit(generate_ans,
|
| 351 |
+
[text_input, chatbot, chat_state, img_list, radio, text_input, num_beams, temperature],
|
| 352 |
+
[text_input, chatbot, chat_state, img_list])
|
| 353 |
+
|
| 354 |
+
# text_input.submit(gradio_ask, [text_input, chatbot, chat_state, radio], [chatbot, chat_state]).then(
|
| 355 |
+
# gradio_answer, [chatbot, chat_state, img_list, radio, text_input, num_beams, temperature],
|
| 356 |
+
# [text_input, chatbot, chat_state, img_list]
|
| 357 |
+
# )
|
| 358 |
clear.click(gradio_reset, [chat_state, img_list], [chatbot, image, text_input, upload_button, chat_state, img_list],
|
| 359 |
queue=False)
|
| 360 |
|
multimodal/open_flamingo/chat/conversation.py
CHANGED
|
@@ -519,72 +519,4 @@ class Chat:
|
|
| 519 |
# return mixed_embs
|
| 520 |
|
| 521 |
|
| 522 |
-
def evaluate_exp(
|
| 523 |
-
model,
|
| 524 |
-
tokenizer,
|
| 525 |
-
image_processor,
|
| 526 |
-
vis_embed_size=None,
|
| 527 |
-
rank=0,
|
| 528 |
-
world_size=1,
|
| 529 |
-
id=0,
|
| 530 |
-
add_visual=True,
|
| 531 |
-
):
|
| 532 |
-
media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
|
| 533 |
-
box_token_id = tokenizer("<|#box#|>", add_special_tokens=False)["input_ids"][-1]
|
| 534 |
-
endofobject_token_id = tokenizer("<|#endofobject#|>", add_special_tokens=False)["input_ids"][-1]
|
| 535 |
-
endofattr_token_id = tokenizer("<|#endofattr#|>", add_special_tokens=False)["input_ids"][-1]
|
| 536 |
-
endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
|
| 537 |
-
visual_token_id = tokenizer("<|#visual#|>", add_special_tokens=False)["input_ids"][-1]
|
| 538 |
-
previsual_token_id = tokenizer("<|#previsual#|>", add_special_tokens=False)["input_ids"][-1]
|
| 539 |
-
prebox_token_id = tokenizer("<|#prebox#|>", add_special_tokens=False)["input_ids"][-1]
|
| 540 |
-
size = image_processor.size["shortest_edge"]
|
| 541 |
-
model.eval()
|
| 542 |
-
# "/gpfs/u/home/LMCG/LMCGljnn/scratch-shared/cdl/tmp_img/chat_vis/chat19.png"
|
| 543 |
-
image_path = input("Please enter the image path: ")
|
| 544 |
-
image = Image.open(image_path).convert("RGB")
|
| 545 |
-
image = image.resize((size, size))
|
| 546 |
-
print(f"image size: {image.size}")
|
| 547 |
-
batch_images = preprocess_image(image, image_processor).unsqueeze(0).unsqueeze(1).unsqueeze(0)
|
| 548 |
-
conversation = []
|
| 549 |
-
human_sentence = None
|
| 550 |
-
while True:
|
| 551 |
-
human_sentence = input("### Human: ")
|
| 552 |
-
if human_sentence == "#end#":
|
| 553 |
-
break
|
| 554 |
-
conversation.append({
|
| 555 |
-
"from": "human",
|
| 556 |
-
"value": human_sentence,
|
| 557 |
-
})
|
| 558 |
-
conversation.append({
|
| 559 |
-
"from": "gpt",
|
| 560 |
-
"value": "",
|
| 561 |
-
})
|
| 562 |
-
text = preprocess_conv(conversation).strip()
|
| 563 |
-
caption = f"<|#image#|>{tokenizer.pad_token * vis_embed_size}<|#endofimage#|>{text}"
|
| 564 |
-
encodings = tokenizer(
|
| 565 |
-
caption,
|
| 566 |
-
padding="longest",
|
| 567 |
-
truncation=True,
|
| 568 |
-
return_tensors="pt",
|
| 569 |
-
max_length=2000,
|
| 570 |
-
)
|
| 571 |
-
input_ids = encodings["input_ids"].to("cuda")
|
| 572 |
-
attention_mask = encodings["attention_mask"].to("cuda")
|
| 573 |
-
image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
|
| 574 |
-
image_start_index_list = [[x] for x in image_start_index_list]
|
| 575 |
-
image_nums = [1] * len(input_ids)
|
| 576 |
-
with torch.no_grad() and torch.cuda.amp.autocast(dtype=torch.float16):
|
| 577 |
-
outputs = model.generate(
|
| 578 |
-
batch_images,
|
| 579 |
-
input_ids,
|
| 580 |
-
attention_mask=attention_mask,
|
| 581 |
-
max_new_tokens=100,
|
| 582 |
-
# min_new_tokens=8,
|
| 583 |
-
num_beams=1,
|
| 584 |
-
image_start_index_list=image_start_index_list,
|
| 585 |
-
image_nums=image_nums,
|
| 586 |
-
)
|
| 587 |
-
print(f"### Assistant: {tokenizer.decode(outputs[0, input_ids.shape[1]:], skip_special_tokens=True).strip()}")
|
| 588 |
-
|
| 589 |
-
|
| 590 |
|
|
|
|
| 519 |
# return mixed_embs
|
| 520 |
|
| 521 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 522 |
|
multimodal/open_flamingo/eval/task/caption_chat.py
CHANGED
|
@@ -1,12 +1,14 @@
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import more_itertools
|
| 3 |
from tqdm import tqdm
|
| 4 |
import json
|
| 5 |
import time
|
| 6 |
import os
|
|
|
|
| 7 |
from transformers import LogitsProcessor, MinNewTokensLengthLogitsProcessor, ForcedEOSTokenLogitsProcessor
|
| 8 |
from PIL import Image
|
| 9 |
-
|
| 10 |
|
| 11 |
class VisualLogitsProcessor(LogitsProcessor):
|
| 12 |
def __init__(self, tokenizer):
|
|
@@ -24,10 +26,7 @@ class VisualLogitsProcessor(LogitsProcessor):
|
|
| 24 |
def __call__(self, input_ids, scores):
|
| 25 |
# print("decoding===>", self.tokenizer.decode(scores.sort(descending=True).indices.tolist()[0][:self.topk]))
|
| 26 |
# import pdb; pdb.set_trace()
|
| 27 |
-
if self.object_token_id in scores.sort(descending=True).indices.tolist()[0][
|
| 28 |
-
1:self.topk] and self.eos_token_id not in \
|
| 29 |
-
scores.sort(descending=True).indices.tolist()[0][:self.topk] and (
|
| 30 |
-
input_ids == self.object_token_id).sum() * 2 == (input_ids == self.endofobject_token_id).sum():
|
| 31 |
scores[0, self.object_token_id] = 1000
|
| 32 |
if input_ids[0, -1] == self.object_token_id and input_ids[0, -2] != self.prebox_token_id:
|
| 33 |
if (input_ids[0, :-1] == self.object_token_id).sum() != 0:
|
|
@@ -53,13 +52,165 @@ def prepare_batch_images(batch, image_processor):
|
|
| 53 |
return batch_images
|
| 54 |
|
| 55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
def captioner(
|
| 57 |
model, tokenizer, image_ori, batch_images, input_ids, attention_mask, image_start_index_list, image_nums,
|
| 58 |
added_bbox_list, debug=True):
|
| 59 |
"""Evaluate a model on COCO dataset.
|
| 60 |
Returns:
|
| 61 |
float: CIDEr score
|
| 62 |
-
|
| 63 |
"""
|
| 64 |
visual_logits_processor = VisualLogitsProcessor(tokenizer)
|
| 65 |
model.eval()
|
|
@@ -80,125 +231,131 @@ def captioner(
|
|
| 80 |
prompt = None
|
| 81 |
out_image = None
|
| 82 |
no_end = True
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
print("input--->", tokenizer.decode(input_ids[0]))
|
| 102 |
-
p1 = MinNewTokensLengthLogitsProcessor(
|
| 103 |
-
prompt_length_to_skip=input_ids.shape[-1],
|
| 104 |
-
min_new_tokens=5,
|
| 105 |
-
eos_token_id=bos_token_id,
|
| 106 |
-
)
|
| 107 |
-
with torch.inference_mode():
|
| 108 |
-
outputs = model.generate(
|
| 109 |
-
batch_images,
|
| 110 |
-
input_ids,
|
| 111 |
-
attention_mask=attention_mask,
|
| 112 |
-
max_new_tokens=20,
|
| 113 |
-
# min_new_tokens=8,
|
| 114 |
-
num_beams=1,
|
| 115 |
-
# length_penalty=0,
|
| 116 |
-
image_start_index_list=image_start_index_list,
|
| 117 |
-
image_nums=image_nums,
|
| 118 |
-
added_bbox_list=added_bbox_list if len(added_bbox_list) != 0 else None,
|
| 119 |
-
logits_processor_list=[p1, visual_logits_processor],
|
| 120 |
-
)
|
| 121 |
-
if debug:
|
| 122 |
-
print("outputs--->", tokenizer.decode(outputs[0]))
|
| 123 |
-
if outputs[0, -2] in [previsual_token_id, visual_token_id] and outputs[0, -1] == bos_token_id:
|
| 124 |
-
prompt = tokenizer.decode(outputs.clone()[0])
|
| 125 |
-
is_visual = (outputs[0, -2] == visual_token_id)
|
| 126 |
-
batch_text = tokenizer.batch_decode(outputs[:, :-1])
|
| 127 |
-
encodings = tokenizer(
|
| 128 |
-
batch_text,
|
| 129 |
-
padding="longest",
|
| 130 |
-
truncation=True,
|
| 131 |
-
return_tensors="pt",
|
| 132 |
-
max_length=2000,
|
| 133 |
-
)
|
| 134 |
-
input_ids = encodings["input_ids"]
|
| 135 |
-
attention_mask = encodings["attention_mask"]
|
| 136 |
-
image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
|
| 137 |
-
image_start_index_list = [[x] for x in image_start_index_list]
|
| 138 |
-
image_nums = [1] * len(input_ids)
|
| 139 |
if debug:
|
| 140 |
-
print("
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
attention_mask=attention_mask,
|
| 146 |
-
|
|
|
|
|
|
|
|
|
|
| 147 |
image_start_index_list=image_start_index_list,
|
|
|
|
| 148 |
added_bbox_list=added_bbox_list if len(added_bbox_list) != 0 else None,
|
| 149 |
-
|
| 150 |
)
|
| 151 |
-
boxes = outputs["boxes"]
|
| 152 |
-
scores = outputs["scores"]
|
| 153 |
if debug:
|
| 154 |
-
print("
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
if debug:
|
| 164 |
-
print("
|
| 165 |
-
first_box = boxes[scores.argmax()]
|
| 166 |
-
added_bbox_list += [torch.tensor(first_box).unsqueeze(0) / 224]
|
| 167 |
-
prompt = prompt[:-len(tokenizer.eos_token)]
|
| 168 |
-
prompt += box_token + endofobject_token
|
| 169 |
-
if debug:
|
| 170 |
-
print("after inserting visual---->", prompt)
|
| 171 |
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
if debug:
|
| 183 |
-
print("
|
|
|
|
|
|
|
|
|
|
| 184 |
else:
|
| 185 |
-
|
| 186 |
-
# import pdb;pdb.set_trace()
|
| 187 |
-
prompt = tokenizer.decode(outputs.clone()[0])
|
| 188 |
-
if debug:
|
| 189 |
-
print("before else---->", prompt)
|
| 190 |
-
prompt = tokenizer.decode(outputs[0, :-2].clone()[0])
|
| 191 |
-
if debug:
|
| 192 |
-
print("after else---->", prompt)
|
| 193 |
-
else:
|
| 194 |
-
no_end = False
|
| 195 |
outputs = outputs[:, ori_prompt_length:]
|
| 196 |
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0].replace('"', "")
|
| 197 |
open_cv_image = np.array(image_ori)
|
| 198 |
open_cv_image = open_cv_image[:, :, ::-1].copy()
|
|
|
|
|
|
|
| 199 |
for i, pre_box in enumerate(added_bbox_list):
|
| 200 |
-
|
|
|
|
|
|
|
| 201 |
(0, 255, 0), i + 1)
|
|
|
|
| 202 |
out_image = Image.fromarray(cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB))
|
| 203 |
# new_predictions = [
|
| 204 |
# postprocess_captioning_generation(out).replace('"', "")
|
|
@@ -206,6 +363,4 @@ def captioner(
|
|
| 206 |
# ]
|
| 207 |
# import pdb; pdb.set_trace()
|
| 208 |
|
| 209 |
-
return outputs, out_image
|
| 210 |
-
|
| 211 |
-
|
|
|
|
| 1 |
+
|
| 2 |
import torch
|
| 3 |
import more_itertools
|
| 4 |
from tqdm import tqdm
|
| 5 |
import json
|
| 6 |
import time
|
| 7 |
import os
|
| 8 |
+
import numpy as np
|
| 9 |
from transformers import LogitsProcessor, MinNewTokensLengthLogitsProcessor, ForcedEOSTokenLogitsProcessor
|
| 10 |
from PIL import Image
|
| 11 |
+
import cv2
|
| 12 |
|
| 13 |
class VisualLogitsProcessor(LogitsProcessor):
|
| 14 |
def __init__(self, tokenizer):
|
|
|
|
| 26 |
def __call__(self, input_ids, scores):
|
| 27 |
# print("decoding===>", self.tokenizer.decode(scores.sort(descending=True).indices.tolist()[0][:self.topk]))
|
| 28 |
# import pdb; pdb.set_trace()
|
| 29 |
+
if self.object_token_id in scores.sort(descending=True).indices.tolist()[0][1:self.topk] and self.eos_token_id not in scores.sort(descending=True).indices.tolist()[0][:self.topk] and (input_ids == self.object_token_id).sum() * 2 == (input_ids == self.endofobject_token_id).sum():
|
|
|
|
|
|
|
|
|
|
| 30 |
scores[0, self.object_token_id] = 1000
|
| 31 |
if input_ids[0, -1] == self.object_token_id and input_ids[0, -2] != self.prebox_token_id:
|
| 32 |
if (input_ids[0, :-1] == self.object_token_id).sum() != 0:
|
|
|
|
| 52 |
return batch_images
|
| 53 |
|
| 54 |
|
| 55 |
+
# def captioner(
|
| 56 |
+
# model, tokenizer, image_ori, batch_images, input_ids, attention_mask, image_start_index_list, image_nums,
|
| 57 |
+
# added_bbox_list, debug=True):
|
| 58 |
+
# """Evaluate a model on COCO dataset.
|
| 59 |
+
# Returns:
|
| 60 |
+
# float: CIDEr score
|
| 61 |
+
#
|
| 62 |
+
# """
|
| 63 |
+
# visual_logits_processor = VisualLogitsProcessor(tokenizer)
|
| 64 |
+
# model.eval()
|
| 65 |
+
# # model.eval().cuda()
|
| 66 |
+
# lang_encoder_name = model.lang_encoder.__class__.__name__.lower()
|
| 67 |
+
# media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
|
| 68 |
+
# endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
|
| 69 |
+
# pad_token_id = tokenizer(tokenizer.pad_token, add_special_tokens=False)["input_ids"][-1]
|
| 70 |
+
# bos_token_id = tokenizer(tokenizer.bos_token, add_special_tokens=False)["input_ids"][-1]
|
| 71 |
+
# previsual_token_id = tokenizer("<|#previsual#|>", add_special_tokens=False)["input_ids"][-1]
|
| 72 |
+
# visual_token_id = tokenizer("<|#visual#|>", add_special_tokens=False)["input_ids"][-1]
|
| 73 |
+
# box_token = "<|#box#|>"
|
| 74 |
+
# prebox_token = "<|#prebox#|>"
|
| 75 |
+
# endofobject_token = "<|#endofobject#|>"
|
| 76 |
+
# object_token = "<|#object#|>"
|
| 77 |
+
# ori_prompt_length = len(input_ids[0])
|
| 78 |
+
# have_prebox = False
|
| 79 |
+
# prompt = None
|
| 80 |
+
# out_image = None
|
| 81 |
+
# no_end = True
|
| 82 |
+
# for i in range(500):
|
| 83 |
+
# if no_end:
|
| 84 |
+
# batch_images = batch_images
|
| 85 |
+
# if prompt == None:
|
| 86 |
+
# input_ids = input_ids
|
| 87 |
+
# attention_mask = attention_mask
|
| 88 |
+
# else:
|
| 89 |
+
# encodings = tokenizer(
|
| 90 |
+
# [prompt],
|
| 91 |
+
# padding="longest",
|
| 92 |
+
# truncation=True,
|
| 93 |
+
# return_tensors="pt",
|
| 94 |
+
# max_length=2000,
|
| 95 |
+
# )
|
| 96 |
+
# attention_mask = encodings["attention_mask"]
|
| 97 |
+
# input_ids = encodings["input_ids"]
|
| 98 |
+
# image_start_index_list = image_start_index_list
|
| 99 |
+
# image_nums = image_nums
|
| 100 |
+
# if debug:
|
| 101 |
+
# print("input--->", tokenizer.decode(input_ids[0]))
|
| 102 |
+
# p1 = MinNewTokensLengthLogitsProcessor(
|
| 103 |
+
# prompt_length_to_skip=input_ids.shape[-1],
|
| 104 |
+
# min_new_tokens=5,
|
| 105 |
+
# eos_token_id=bos_token_id,
|
| 106 |
+
# )
|
| 107 |
+
# with torch.inference_mode():
|
| 108 |
+
# outputs = model.generate(
|
| 109 |
+
# batch_images,
|
| 110 |
+
# input_ids,
|
| 111 |
+
# attention_mask=attention_mask,
|
| 112 |
+
# max_new_tokens=20,
|
| 113 |
+
# # min_new_tokens=8,
|
| 114 |
+
# num_beams=1,
|
| 115 |
+
# # length_penalty=0,
|
| 116 |
+
# image_start_index_list=image_start_index_list,
|
| 117 |
+
# image_nums=image_nums,
|
| 118 |
+
# added_bbox_list=added_bbox_list if len(added_bbox_list) != 0 else None,
|
| 119 |
+
# logits_processor_list=[p1, visual_logits_processor],
|
| 120 |
+
# )
|
| 121 |
+
# if debug:
|
| 122 |
+
# print("outputs--->", tokenizer.decode(outputs[0]))
|
| 123 |
+
# input_ids = encodings["input_ids"]
|
| 124 |
+
# attention_mask = encodings["attention_mask"]
|
| 125 |
+
# image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
|
| 126 |
+
# image_start_index_list = [[x] for x in image_start_index_list]
|
| 127 |
+
# image_nums = [1] * len(input_ids)
|
| 128 |
+
# if debug:
|
| 129 |
+
# print("get the visual bbox--->", tokenizer.decode(input_ids[0]))
|
| 130 |
+
# with torch.no_grad():
|
| 131 |
+
# outputs = model(
|
| 132 |
+
# vision_x=batch_images,
|
| 133 |
+
# lang_x=input_ids,
|
| 134 |
+
# attention_mask=attention_mask,
|
| 135 |
+
# image_nums=image_nums,
|
| 136 |
+
# image_start_index_list=image_start_index_list,
|
| 137 |
+
# added_bbox_list=added_bbox_list if len(added_bbox_list) != 0 else None,
|
| 138 |
+
# add_box=added_bbox_list is not None and len(added_bbox_list) != 0,
|
| 139 |
+
# )
|
| 140 |
+
# boxes = outputs["boxes"]
|
| 141 |
+
# scores = outputs["scores"]
|
| 142 |
+
# if debug:
|
| 143 |
+
# print("box num---->", len(boxes))
|
| 144 |
+
# # if not model.valid:
|
| 145 |
+
# # import pdb; pdb.set_trace()
|
| 146 |
+
# if boxes is not None:
|
| 147 |
+
# if is_visual:
|
| 148 |
+
# if have_prebox:
|
| 149 |
+
# added_bbox_list.pop()
|
| 150 |
+
# prompt = prompt.replace("<|#previsual#|><|#prebox#|><|#object#|>", "")
|
| 151 |
+
# have_prebox = False
|
| 152 |
+
# if debug:
|
| 153 |
+
# print("find previsual and remove it--->", prompt)
|
| 154 |
+
# first_box = boxes[scores.argmax()]
|
| 155 |
+
# added_bbox_list += [torch.tensor(first_box).unsqueeze(0) / 224]
|
| 156 |
+
# prompt = prompt[:-len(tokenizer.eos_token)]
|
| 157 |
+
# prompt += box_token + endofobject_token
|
| 158 |
+
# if debug:
|
| 159 |
+
# print("after inserting visual---->", prompt)
|
| 160 |
+
#
|
| 161 |
+
# else:
|
| 162 |
+
# import numpy as np
|
| 163 |
+
# import cv2
|
| 164 |
+
#
|
| 165 |
+
# # exit()
|
| 166 |
+
# pre_box = boxes[scores.argmax()]
|
| 167 |
+
# added_bbox_list += [torch.tensor(pre_box).unsqueeze(0) / 224]
|
| 168 |
+
# prompt = prompt[:-len(tokenizer.eos_token)]
|
| 169 |
+
# prompt += prebox_token + object_token
|
| 170 |
+
# have_prebox = True
|
| 171 |
+
# if debug:
|
| 172 |
+
# print("after inserting previsual---->", prompt)
|
| 173 |
+
# else:
|
| 174 |
+
# # if debug:
|
| 175 |
+
# # import pdb;pdb.set_trace()
|
| 176 |
+
# prompt = tokenizer.decode(outputs.clone()[0])
|
| 177 |
+
# if debug:
|
| 178 |
+
# print("before else---->", prompt)
|
| 179 |
+
# prompt = tokenizer.decode(outputs[0, :-2].clone()[0])
|
| 180 |
+
# if debug:
|
| 181 |
+
# print("after else---->", prompt)
|
| 182 |
+
#
|
| 183 |
+
# else:
|
| 184 |
+
# no_end = False
|
| 185 |
+
# # break
|
| 186 |
+
# # print("outputs--->", tokenizer.decode(outputs[0]))
|
| 187 |
+
# outputs = outputs[:, ori_prompt_length:]
|
| 188 |
+
# outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0].replace('"', "")
|
| 189 |
+
# open_cv_image = np.array(image_ori)
|
| 190 |
+
# open_cv_image = open_cv_image[:, :, ::-1].copy()
|
| 191 |
+
# width = image_ori.width
|
| 192 |
+
# height = image_ori.height
|
| 193 |
+
# for i, pre_box in enumerate(added_bbox_list):
|
| 194 |
+
# open_cv_image = cv2.rectangle(open_cv_image, np.array(pre_box[0][:2]*[width,height]).astype(int), np.array(pre_box[0][2:]*[width,height]).astype(int),
|
| 195 |
+
# (0, 255, 0), i + 1)
|
| 196 |
+
# out_image = Image.fromarray(cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB))
|
| 197 |
+
# # new_predictions = [
|
| 198 |
+
# # postprocess_captioning_generation(out).replace('"', "")
|
| 199 |
+
# # for out in tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
| 200 |
+
# # ]
|
| 201 |
+
# # import pdb; pdb.set_trace()
|
| 202 |
+
#
|
| 203 |
+
# return outputs, out_image
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
|
| 208 |
def captioner(
|
| 209 |
model, tokenizer, image_ori, batch_images, input_ids, attention_mask, image_start_index_list, image_nums,
|
| 210 |
added_bbox_list, debug=True):
|
| 211 |
"""Evaluate a model on COCO dataset.
|
| 212 |
Returns:
|
| 213 |
float: CIDEr score
|
|
|
|
| 214 |
"""
|
| 215 |
visual_logits_processor = VisualLogitsProcessor(tokenizer)
|
| 216 |
model.eval()
|
|
|
|
| 231 |
prompt = None
|
| 232 |
out_image = None
|
| 233 |
no_end = True
|
| 234 |
+
for i in range(100):
|
| 235 |
+
if no_end:
|
| 236 |
+
batch_images = batch_images
|
| 237 |
+
if prompt == None:
|
| 238 |
+
input_ids = input_ids
|
| 239 |
+
attention_mask = attention_mask
|
| 240 |
+
else:
|
| 241 |
+
encodings = tokenizer(
|
| 242 |
+
[prompt],
|
| 243 |
+
padding="longest",
|
| 244 |
+
truncation=True,
|
| 245 |
+
return_tensors="pt",
|
| 246 |
+
max_length=2000,
|
| 247 |
+
)
|
| 248 |
+
attention_mask = encodings["attention_mask"]
|
| 249 |
+
input_ids = encodings["input_ids"]
|
| 250 |
+
image_start_index_list = image_start_index_list
|
| 251 |
+
image_nums = image_nums
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
if debug:
|
| 253 |
+
print("input--->", tokenizer.decode(input_ids[0]))
|
| 254 |
+
p1 = MinNewTokensLengthLogitsProcessor(
|
| 255 |
+
prompt_length_to_skip=input_ids.shape[-1],
|
| 256 |
+
min_new_tokens=5,
|
| 257 |
+
eos_token_id=bos_token_id,
|
| 258 |
+
)
|
| 259 |
+
with torch.inference_mode():
|
| 260 |
+
outputs = model.generate(
|
| 261 |
+
batch_images,
|
| 262 |
+
input_ids,
|
| 263 |
attention_mask=attention_mask,
|
| 264 |
+
max_new_tokens=20,
|
| 265 |
+
# min_new_tokens=8,
|
| 266 |
+
num_beams=1,
|
| 267 |
+
# length_penalty=0,
|
| 268 |
image_start_index_list=image_start_index_list,
|
| 269 |
+
image_nums=image_nums,
|
| 270 |
added_bbox_list=added_bbox_list if len(added_bbox_list) != 0 else None,
|
| 271 |
+
logits_processor_list=[p1, visual_logits_processor],
|
| 272 |
)
|
|
|
|
|
|
|
| 273 |
if debug:
|
| 274 |
+
print("outputs--->", tokenizer.decode(outputs[0]))
|
| 275 |
+
if outputs[0, -2] in [previsual_token_id, visual_token_id] and outputs[0, -1] == bos_token_id:
|
| 276 |
+
prompt = tokenizer.decode(outputs.clone()[0])
|
| 277 |
+
is_visual = (outputs[0, -2] == visual_token_id)
|
| 278 |
+
batch_text = tokenizer.batch_decode(outputs[:, :-1])
|
| 279 |
+
encodings = tokenizer(
|
| 280 |
+
batch_text,
|
| 281 |
+
padding="longest",
|
| 282 |
+
truncation=True,
|
| 283 |
+
return_tensors="pt",
|
| 284 |
+
max_length=2000,
|
| 285 |
+
)
|
| 286 |
+
input_ids = encodings["input_ids"]
|
| 287 |
+
attention_mask = encodings["attention_mask"]
|
| 288 |
+
image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
|
| 289 |
+
image_start_index_list = [[x] for x in image_start_index_list]
|
| 290 |
+
image_nums = [1] * len(input_ids)
|
| 291 |
+
if debug:
|
| 292 |
+
print("get the visual bbox--->", tokenizer.decode(input_ids[0]))
|
| 293 |
+
with torch.no_grad():
|
| 294 |
+
outputs = model(
|
| 295 |
+
vision_x=batch_images,
|
| 296 |
+
lang_x=input_ids,
|
| 297 |
+
attention_mask=attention_mask,
|
| 298 |
+
image_nums=image_nums,
|
| 299 |
+
image_start_index_list=image_start_index_list,
|
| 300 |
+
added_bbox_list=added_bbox_list if len(added_bbox_list) != 0 else None,
|
| 301 |
+
add_box=added_bbox_list is not None and len(added_bbox_list) != 0,
|
| 302 |
+
)
|
| 303 |
+
boxes = outputs["boxes"]
|
| 304 |
+
scores = outputs["scores"]
|
| 305 |
+
if debug:
|
| 306 |
+
print("box num---->", len(boxes))
|
| 307 |
+
# if not model.valid:
|
| 308 |
+
# import pdb; pdb.set_trace()
|
| 309 |
+
if boxes is not None:
|
| 310 |
+
if is_visual:
|
| 311 |
+
if have_prebox:
|
| 312 |
+
added_bbox_list.pop()
|
| 313 |
+
prompt = prompt.replace("<|#previsual#|><|#prebox#|><|#object#|>", "")
|
| 314 |
+
have_prebox = False
|
| 315 |
+
if debug:
|
| 316 |
+
print("find previsual and remove it--->", prompt)
|
| 317 |
+
first_box = boxes[scores.argmax()]
|
| 318 |
+
added_bbox_list += [torch.tensor(first_box).unsqueeze(0) / 224]
|
| 319 |
+
prompt = prompt[:-len(tokenizer.eos_token)]
|
| 320 |
+
prompt += box_token + endofobject_token
|
| 321 |
if debug:
|
| 322 |
+
print("after inserting visual---->", prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 323 |
|
| 324 |
+
else:
|
| 325 |
+
import numpy as np
|
| 326 |
+
import cv2
|
| 327 |
|
| 328 |
+
# exit()
|
| 329 |
+
pre_box = boxes[scores.argmax()]
|
| 330 |
+
added_bbox_list += [torch.tensor(pre_box).unsqueeze(0) / 224]
|
| 331 |
+
prompt = prompt[:-len(tokenizer.eos_token)]
|
| 332 |
+
prompt += prebox_token + object_token
|
| 333 |
+
have_prebox = True
|
| 334 |
+
if debug:
|
| 335 |
+
print("after inserting previsual---->", prompt)
|
| 336 |
+
else:
|
| 337 |
+
# if debug:
|
| 338 |
+
# import pdb;pdb.set_trace()
|
| 339 |
+
prompt = tokenizer.decode(outputs.clone()[0])
|
| 340 |
if debug:
|
| 341 |
+
print("before else---->", prompt)
|
| 342 |
+
prompt = tokenizer.decode(outputs[0, :-2].clone()[0])
|
| 343 |
+
if debug:
|
| 344 |
+
print("after else---->", prompt)
|
| 345 |
else:
|
| 346 |
+
no_end = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 347 |
outputs = outputs[:, ori_prompt_length:]
|
| 348 |
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0].replace('"', "")
|
| 349 |
open_cv_image = np.array(image_ori)
|
| 350 |
open_cv_image = open_cv_image[:, :, ::-1].copy()
|
| 351 |
+
width = image_ori.width
|
| 352 |
+
height = image_ori.height
|
| 353 |
for i, pre_box in enumerate(added_bbox_list):
|
| 354 |
+
print(pre_box)
|
| 355 |
+
open_cv_image = cv2.rectangle(open_cv_image, (np.array(pre_box[0][:2]) * [width, height]).astype(int),
|
| 356 |
+
(np.array(pre_box[0][2:]) * [width, height]).astype(int),
|
| 357 |
(0, 255, 0), i + 1)
|
| 358 |
+
|
| 359 |
out_image = Image.fromarray(cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB))
|
| 360 |
# new_predictions = [
|
| 361 |
# postprocess_captioning_generation(out).replace('"', "")
|
|
|
|
| 363 |
# ]
|
| 364 |
# import pdb; pdb.set_trace()
|
| 365 |
|
| 366 |
+
return outputs, out_image
|
|
|
|
|
|