vertex / app /routes /chat_api.py
bibibi12345's picture
added openai mode for express
d342ca5
import asyncio
import json
import random
from fastapi import APIRouter, Depends, Request
from fastapi.responses import JSONResponse, StreamingResponse
# Google specific imports
from google.genai import types
from google import genai
# Local module imports
from models import OpenAIRequest
from auth import get_api_key
import config as app_config
from message_processing import (
create_gemini_prompt,
create_encrypted_gemini_prompt,
create_encrypted_full_gemini_prompt,
ENCRYPTION_INSTRUCTIONS,
)
from api_helpers import (
create_generation_config,
create_openai_error_response,
execute_gemini_call,
)
from openai_handler import OpenAIDirectHandler
from project_id_discovery import discover_project_id
router = APIRouter()
@router.post("/v1/chat/completions")
async def chat_completions(fastapi_request: Request, request: OpenAIRequest, api_key: str = Depends(get_api_key)):
try:
credential_manager_instance = fastapi_request.app.state.credential_manager
OPENAI_DIRECT_SUFFIX = "-openai"
EXPERIMENTAL_MARKER = "-exp-"
PAY_PREFIX = "[PAY]"
EXPRESS_PREFIX = "[EXPRESS] " # Note the space for easier stripping
# Model validation based on a predefined list has been removed as per user request.
# The application will now attempt to use any provided model string.
# We still need to fetch vertex_express_model_ids for the Express Mode logic.
# vertex_express_model_ids = await get_vertex_express_models() # We'll use the prefix now
# Updated logic for is_openai_direct_model
is_openai_direct_model = False
if request.model.endswith(OPENAI_DIRECT_SUFFIX):
temp_name_for_marker_check = request.model[:-len(OPENAI_DIRECT_SUFFIX)]
# An OpenAI model can be prefixed with PAY, EXPRESS, or contain EXP
if temp_name_for_marker_check.startswith(PAY_PREFIX) or \
temp_name_for_marker_check.startswith(EXPRESS_PREFIX) or \
EXPERIMENTAL_MARKER in temp_name_for_marker_check:
is_openai_direct_model = True
is_auto_model = request.model.endswith("-auto")
is_grounded_search = request.model.endswith("-search")
is_encrypted_model = request.model.endswith("-encrypt")
is_encrypted_full_model = request.model.endswith("-encrypt-full")
is_nothinking_model = request.model.endswith("-nothinking")
is_max_thinking_model = request.model.endswith("-max")
base_model_name = request.model # Start with the full model name
# Determine base_model_name by stripping known prefixes and suffixes
# Order of stripping: Prefixes first, then suffixes.
is_express_model_request = False
if base_model_name.startswith(EXPRESS_PREFIX):
is_express_model_request = True
base_model_name = base_model_name[len(EXPRESS_PREFIX):]
if base_model_name.startswith(PAY_PREFIX):
base_model_name = base_model_name[len(PAY_PREFIX):]
# Suffix stripping (applied to the name after prefix removal)
# This order matters if a model could have multiple (e.g. -encrypt-auto, though not currently a pattern)
if is_openai_direct_model: # This check is based on request.model, so it's fine here
# If it was an OpenAI direct model, its base name is request.model minus suffix.
# We need to ensure PAY_PREFIX or EXPRESS_PREFIX are also stripped if they were part of the original.
temp_base_for_openai = request.model[:-len(OPENAI_DIRECT_SUFFIX)]
if temp_base_for_openai.startswith(EXPRESS_PREFIX):
temp_base_for_openai = temp_base_for_openai[len(EXPRESS_PREFIX):]
if temp_base_for_openai.startswith(PAY_PREFIX):
temp_base_for_openai = temp_base_for_openai[len(PAY_PREFIX):]
base_model_name = temp_base_for_openai # Assign the fully stripped name
elif is_auto_model: base_model_name = base_model_name[:-len("-auto")]
elif is_grounded_search: base_model_name = base_model_name[:-len("-search")]
elif is_encrypted_full_model: base_model_name = base_model_name[:-len("-encrypt-full")] # Must be before -encrypt
elif is_encrypted_model: base_model_name = base_model_name[:-len("-encrypt")]
elif is_nothinking_model: base_model_name = base_model_name[:-len("-nothinking")]
elif is_max_thinking_model: base_model_name = base_model_name[:-len("-max")]
# Specific model variant checks (if any remain exclusive and not covered dynamically)
if is_nothinking_model and not (base_model_name.startswith("gemini-2.5-flash") or base_model_name == "gemini-2.5-pro-preview-06-05"):
return JSONResponse(status_code=400, content=create_openai_error_response(400, f"Model '{request.model}' (-nothinking) is only supported for models starting with 'gemini-2.5-flash' or 'gemini-2.5-pro-preview-06-05'.", "invalid_request_error"))
if is_max_thinking_model and not (base_model_name.startswith("gemini-2.5-flash") or base_model_name == "gemini-2.5-pro-preview-06-05"):
return JSONResponse(status_code=400, content=create_openai_error_response(400, f"Model '{request.model}' (-max) is only supported for models starting with 'gemini-2.5-flash' or 'gemini-2.5-pro-preview-06-05'.", "invalid_request_error"))
generation_config = create_generation_config(request)
client_to_use = None
express_key_manager_instance = fastapi_request.app.state.express_key_manager
# This client initialization logic is for Gemini models (i.e., non-OpenAI Direct models).
# If 'is_openai_direct_model' is true, this section will be skipped, and the
# dedicated 'if is_openai_direct_model:' block later will handle it.
if is_express_model_request: # Changed from elif to if
if express_key_manager_instance.get_total_keys() == 0:
error_msg = f"Model '{request.model}' is an Express model and requires an Express API key, but none are configured."
print(f"ERROR: {error_msg}")
return JSONResponse(status_code=401, content=create_openai_error_response(401, error_msg, "authentication_error"))
print(f"INFO: Attempting Vertex Express Mode for model request: {request.model} (base: {base_model_name})")
# Use the ExpressKeyManager to get keys and handle retries
total_keys = express_key_manager_instance.get_total_keys()
for attempt in range(total_keys):
key_tuple = express_key_manager_instance.get_express_api_key()
if key_tuple:
original_idx, key_val = key_tuple
try:
# Check if model contains "gemini-2.5-pro" or "gemini-2.5-flash" for direct URL approach
if "gemini-2.5-pro" in base_model_name or "gemini-2.5-flash" in base_model_name:
project_id = await discover_project_id(key_val)
base_url = f"https://aiplatform.googleapis.com/v1/projects/{project_id}/locations/global"
client_to_use = genai.Client(
vertexai=True,
api_key=key_val,
http_options=types.HttpOptions(base_url=base_url)
)
client_to_use._api_client._http_options.api_version = None
print(f"INFO: Attempt {attempt+1}/{total_keys} - Using Vertex Express Mode with custom base URL for model {request.model} (base: {base_model_name}) with API key (original index: {original_idx}).")
else:
client_to_use = genai.Client(vertexai=True, api_key=key_val)
print(f"INFO: Attempt {attempt+1}/{total_keys} - Using Vertex Express Mode SDK for model {request.model} (base: {base_model_name}) with API key (original index: {original_idx}).")
break # Successfully initialized client
except Exception as e:
print(f"WARNING: Attempt {attempt+1}/{total_keys} - Vertex Express Mode client init failed for API key (original index: {original_idx}) for model {request.model}: {e}. Trying next key.")
client_to_use = None # Ensure client_to_use is None for this attempt
else:
# Should not happen if total_keys > 0, but adding a safeguard
print(f"WARNING: Attempt {attempt+1}/{total_keys} - get_express_api_key() returned None unexpectedly.")
client_to_use = None
# Optional: break here if None indicates no more keys are expected
if client_to_use is None: # All configured Express keys failed or none were returned
error_msg = f"All {total_keys} configured Express API keys failed to initialize or were unavailable for model '{request.model}'."
print(f"ERROR: {error_msg}")
return JSONResponse(status_code=500, content=create_openai_error_response(500, error_msg, "server_error"))
else: # Not an Express model request, therefore an SA credential model request for Gemini
print(f"INFO: Model '{request.model}' is an SA credential request for Gemini. Attempting SA credentials.")
rotated_credentials, rotated_project_id = credential_manager_instance.get_credentials()
if rotated_credentials and rotated_project_id:
try:
client_to_use = genai.Client(vertexai=True, credentials=rotated_credentials, project=rotated_project_id, location="global")
print(f"INFO: Using SA credential for Gemini model {request.model} (project: {rotated_project_id})")
except Exception as e:
client_to_use = None # Ensure it's None on failure
error_msg = f"SA credential client initialization failed for Gemini model '{request.model}': {e}."
print(f"ERROR: {error_msg}")
return JSONResponse(status_code=500, content=create_openai_error_response(500, error_msg, "server_error"))
else: # No SA credentials available for an SA model request
error_msg = f"Model '{request.model}' requires SA credentials for Gemini, but none are available or loaded."
print(f"ERROR: {error_msg}")
return JSONResponse(status_code=401, content=create_openai_error_response(401, error_msg, "authentication_error"))
# If we reach here and client_to_use is still None, it means it's an OpenAI Direct Model,
# which handles its own client and responses.
# For Gemini models (Express or SA), client_to_use must be set, or an error returned above.
if not is_openai_direct_model and client_to_use is None:
# This case should ideally not be reached if the logic above is correct,
# as each path (Express/SA for Gemini) should either set client_to_use or return an error.
# This is a safeguard.
print(f"CRITICAL ERROR: Client for Gemini model '{request.model}' was not initialized, and no specific error was returned. This indicates a logic flaw.")
return JSONResponse(status_code=500, content=create_openai_error_response(500, "Critical internal server error: Gemini client not initialized.", "server_error"))
if is_openai_direct_model:
# Use the new OpenAI handler
if is_express_model_request:
openai_handler = OpenAIDirectHandler(express_key_manager=express_key_manager_instance)
return await openai_handler.process_request(request, base_model_name, is_express=True)
else:
openai_handler = OpenAIDirectHandler(credential_manager=credential_manager_instance)
return await openai_handler.process_request(request, base_model_name)
elif is_auto_model:
print(f"Processing auto model: {request.model}")
attempts = [
{"name": "base", "model": base_model_name, "prompt_func": create_gemini_prompt, "config_modifier": lambda c: c},
{"name": "encrypt", "model": base_model_name, "prompt_func": create_encrypted_gemini_prompt, "config_modifier": lambda c: {**c, "system_instruction": ENCRYPTION_INSTRUCTIONS}},
{"name": "old_format", "model": base_model_name, "prompt_func": create_encrypted_full_gemini_prompt, "config_modifier": lambda c: c}
]
last_err = None
for attempt in attempts:
print(f"Auto-mode attempting: '{attempt['name']}' for model {attempt['model']}")
current_gen_config = attempt["config_modifier"](generation_config.copy())
try:
# Pass is_auto_attempt=True for auto-mode calls
result = await execute_gemini_call(client_to_use, attempt["model"], attempt["prompt_func"], current_gen_config, request, is_auto_attempt=True)
return result
except Exception as e_auto:
last_err = e_auto
print(f"Auto-attempt '{attempt['name']}' for model {attempt['model']} failed: {e_auto}")
await asyncio.sleep(1)
print(f"All auto attempts failed. Last error: {last_err}")
err_msg = f"All auto-mode attempts failed for model {request.model}. Last error: {str(last_err)}"
if not request.stream and last_err:
return JSONResponse(status_code=500, content=create_openai_error_response(500, err_msg, "server_error"))
elif request.stream:
# This is the final error handling for auto-mode if all attempts fail AND it was a streaming request
async def final_auto_error_stream():
err_content = create_openai_error_response(500, err_msg, "server_error")
json_payload_final_auto_error = json.dumps(err_content)
# Log the final error being sent to client after all auto-retries failed
print(f"DEBUG: Auto-mode all attempts failed. Yielding final error JSON: {json_payload_final_auto_error}")
yield f"data: {json_payload_final_auto_error}\n\n"
yield "data: [DONE]\n\n"
return StreamingResponse(final_auto_error_stream(), media_type="text/event-stream")
return JSONResponse(status_code=500, content=create_openai_error_response(500, "All auto-mode attempts failed without specific error.", "server_error"))
else: # Not an auto model
current_prompt_func = create_gemini_prompt
# Determine the actual model string to call the API with (e.g., "gemini-1.5-pro-search")
if is_grounded_search:
search_tool = types.Tool(google_search=types.GoogleSearch())
generation_config["tools"] = [search_tool]
elif is_encrypted_model:
generation_config["system_instruction"] = ENCRYPTION_INSTRUCTIONS
current_prompt_func = create_encrypted_gemini_prompt
elif is_encrypted_full_model:
generation_config["system_instruction"] = ENCRYPTION_INSTRUCTIONS
current_prompt_func = create_encrypted_full_gemini_prompt
elif is_nothinking_model:
if base_model_name == "gemini-2.5-pro-preview-06-05":
generation_config["thinking_config"] = {"thinking_budget": 128}
else:
generation_config["thinking_config"] = {"thinking_budget": 0}
elif is_max_thinking_model:
if base_model_name == "gemini-2.5-pro-preview-06-05":
generation_config["thinking_config"] = {"thinking_budget": 32768}
else:
generation_config["thinking_config"] = {"thinking_budget": 24576}
# For non-auto models, the 'base_model_name' might have suffix stripped.
# We should use the original 'request.model' for API call if it's a suffixed one,
# or 'base_model_name' if it's truly a base model without suffixes.
# The current logic uses 'base_model_name' for the API call in the 'else' block.
# This means if `request.model` was "gemini-1.5-pro-search", `base_model_name` becomes "gemini-1.5-pro"
# but the API call might need the full "gemini-1.5-pro-search".
# Let's use `request.model` for the API call here, and `base_model_name` for checks like Express eligibility.
# For non-auto mode, is_auto_attempt defaults to False in execute_gemini_call
return await execute_gemini_call(client_to_use, base_model_name, current_prompt_func, generation_config, request)
except Exception as e:
error_msg = f"Unexpected error in chat_completions endpoint: {str(e)}"
print(error_msg)
return JSONResponse(status_code=500, content=create_openai_error_response(500, error_msg, "server_error"))