|
import warnings |
|
import spaces |
|
warnings.filterwarnings("ignore", category=FutureWarning) |
|
import logging |
|
from argparse import ArgumentParser |
|
from pathlib import Path |
|
import torch |
|
import torchaudio |
|
import gradio as gr |
|
from transformers import AutoModel |
|
import laion_clap |
|
from meanaudio.eval_utils import ( |
|
ModelConfig, |
|
all_model_cfg, |
|
generate_mf, |
|
generate_fm, |
|
setup_eval_logging, |
|
) |
|
from meanaudio.model.flow_matching import FlowMatching |
|
from meanaudio.model.mean_flow import MeanFlow |
|
from meanaudio.model.networks import MeanAudio, get_mean_audio |
|
from meanaudio.model.utils.features_utils import FeaturesUtils |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.allow_tf32 = True |
|
import gc |
|
from datetime import datetime |
|
from huggingface_hub import snapshot_download |
|
log = logging.getLogger() |
|
device = "cpu" |
|
if torch.cuda.is_available(): |
|
device = "cuda" |
|
setup_eval_logging() |
|
OUTPUT_DIR = Path("./output/gradio") |
|
OUTPUT_DIR.mkdir(parents=True, exist_ok=True) |
|
NUM_SAMPLE=7 |
|
snapshot_download(repo_id="google/flan-t5-large") |
|
a=AutoModel.from_pretrained('bert-base-uncased') |
|
b=AutoModel.from_pretrained('roberta-base') |
|
snapshot_download(repo_id="junxiliu/Meanaudio", local_dir="./weights",allow_patterns=["*.pt", "*.pth"] ) |
|
_clap_ckpt_path='./weights/music_speech_audioset_epoch_15_esc_89.98.pt' |
|
laion_clap_model = laion_clap.CLAP_Module(enable_fusion=False, |
|
amodel='HTSAT-base').cuda().eval() |
|
laion_clap_model.load_ckpt(_clap_ckpt_path, verbose=False) |
|
current_model_states = { |
|
|
|
} |
|
|
|
def load_model_if_needed( |
|
variant, model_path, encoder_name, use_rope, text_c_dim |
|
): |
|
global current_model_states |
|
dtype = torch.float32 |
|
existing_state = current_model_states.get(variant) |
|
needs_reload = ( |
|
existing_state is None |
|
or existing_state["args"].variant != variant |
|
or existing_state["args"].model_path != model_path |
|
or existing_state["args"].encoder_name != encoder_name |
|
or existing_state["args"].use_rope != use_rope |
|
or existing_state["args"].text_c_dim != text_c_dim |
|
) |
|
if needs_reload: |
|
log.info(f"Loading/reloading model '{variant}'.") |
|
if variant not in all_model_cfg: |
|
raise ValueError(f"Unknown model variant: {variant}") |
|
model: ModelConfig = all_model_cfg[variant] |
|
seq_cfg = model.seq_cfg |
|
|
|
class MockArgs: |
|
pass |
|
mock_args = MockArgs() |
|
mock_args.variant = variant |
|
mock_args.model_path = model_path |
|
mock_args.encoder_name = encoder_name |
|
mock_args.use_rope = use_rope |
|
mock_args.text_c_dim = text_c_dim |
|
|
|
net: MeanAudio = ( |
|
get_mean_audio( |
|
model.model_name, |
|
use_rope=mock_args.use_rope, |
|
text_c_dim=mock_args.text_c_dim, |
|
) |
|
.to(device, dtype) |
|
.eval() |
|
) |
|
net.load_weights( |
|
torch.load( |
|
mock_args.model_path, map_location=device, weights_only=True |
|
) |
|
) |
|
log.info(f"Loaded weights from {mock_args.model_path}") |
|
|
|
feature_utils = FeaturesUtils( |
|
tod_vae_ckpt=model.vae_path, |
|
enable_conditions=True, |
|
encoder_name=mock_args.encoder_name, |
|
mode=model.mode, |
|
bigvgan_vocoder_ckpt=model.bigvgan_16k_path, |
|
need_vae_encoder=False, |
|
) |
|
feature_utils = feature_utils.to(device, dtype).eval() |
|
|
|
current_model_states[variant] = { |
|
"net": net, |
|
"feature_utils": feature_utils, |
|
"seq_cfg": seq_cfg, |
|
"args": mock_args, |
|
} |
|
log.info(f"Model '{variant}' loaded successfully.") |
|
|
|
return net, feature_utils, seq_cfg, mock_args |
|
else: |
|
log.info(f"Model '{variant}' already loaded with current settings. Skipping reload.") |
|
|
|
return existing_state["net"], existing_state["feature_utils"], existing_state["seq_cfg"], existing_state["args"] |
|
|
|
def initialize_all_default_models(): |
|
log.info("Initializing default models...") |
|
default_models = ['meanaudio_mf', 'fluxaudio_fm'] |
|
common_params = { |
|
"encoder_name": "t5_clap", |
|
"use_rope": True, |
|
"text_c_dim": 512, |
|
|
|
} |
|
for variant in default_models: |
|
model_path = f"./weights/{variant}.pth" |
|
|
|
try: |
|
load_model_if_needed( |
|
variant, model_path, **common_params |
|
) |
|
log.info(f"Default model '{variant}' initialized successfully.") |
|
except Exception as e: |
|
log.error(f"Failed to initialize default model '{variant}': {e}") |
|
|
|
initialize_all_default_models() |
|
|
|
@spaces.GPU(duration=10) |
|
@torch.inference_mode() |
|
def generate_audio_gradio( |
|
prompt, |
|
negative_prompt, |
|
duration, |
|
cfg_strength, |
|
num_steps, |
|
seed, |
|
variant, |
|
): |
|
global current_model_states |
|
|
|
model_path = f"./weights/{variant}.pth" |
|
encoder_name = "t5_clap" |
|
use_rope = True |
|
text_c_dim = 512 |
|
|
|
model_state = current_model_states.get(variant) |
|
if model_state is None: |
|
error_msg = f"Error: Model '{variant}' is not available. It may not have been loaded correctly during startup." |
|
log.error(error_msg) |
|
return error_msg, None |
|
|
|
net = model_state["net"] |
|
feature_utils = model_state["feature_utils"] |
|
seq_cfg = model_state["seq_cfg"] |
|
|
|
args = model_state["args"] |
|
dtype = torch.float32 |
|
|
|
temp_seq_cfg = type(seq_cfg)(**seq_cfg.__dict__) |
|
temp_seq_cfg.duration = duration |
|
|
|
net.update_seq_lengths(temp_seq_cfg.latent_seq_len) |
|
|
|
rng = torch.Generator(device=device) |
|
if seed >= 0: |
|
rng.manual_seed(seed) |
|
else: |
|
rng.seed() |
|
|
|
use_meanflow = variant == "meanaudio_mf" |
|
if use_meanflow: |
|
sampler = MeanFlow(steps=num_steps) |
|
log.info("Using MeanFlow for generation.") |
|
generation_func = generate_mf |
|
sampler_arg_name = "mf" |
|
cfg_strength = 3 |
|
else: |
|
sampler = FlowMatching( |
|
min_sigma=0, inference_mode="euler", num_steps=num_steps |
|
) |
|
log.info("Using FlowMatching for generation.") |
|
generation_func = generate_fm |
|
sampler_arg_name = "fm" |
|
audios = generation_func( |
|
[prompt]*NUM_SAMPLE, |
|
negative_text=[negative_prompt]*NUM_SAMPLE, |
|
feature_utils=feature_utils, |
|
net=net, |
|
rng=rng, |
|
cfg_strength=cfg_strength, |
|
**{sampler_arg_name: sampler}, |
|
) |
|
text_embed = laion_clap_model.get_text_embedding(prompt, use_tensor=True).squeeze() |
|
audio_embed = laion_clap_model.get_audio_embedding_from_data(audios[:,0,:].float().cpu(), use_tensor=True).squeeze() |
|
scores = torch.cosine_similarity(text_embed.expand(audio_embed.shape[0], -1), |
|
audio_embed, |
|
dim=-1) |
|
log.info(scores) |
|
log.info(torch.argmax(scores).item()) |
|
audio=audios[torch.argmax(scores).item()].float().cpu() |
|
safe_prompt = ( |
|
"".join(c for c in prompt if c.isalnum() or c in (" ", "_")) |
|
.rstrip() |
|
.replace(" ", "_")[:50] |
|
) |
|
current_time_string = datetime.now().strftime("%Y%m%d_%H%M%S_%f") |
|
filename = f"{safe_prompt}_{current_time_string}.flac" |
|
save_path = OUTPUT_DIR / filename |
|
torchaudio.save(str(save_path), audio, temp_seq_cfg.sampling_rate) |
|
log.info(f"Audio saved to {save_path}") |
|
|
|
gc.collect() |
|
|
|
return ( |
|
f"Generated audio for prompt: '{prompt}' using {'MeanFlow' if use_meanflow else 'FlowMatching'}", |
|
str(save_path), |
|
) |
|
|
|
theme = gr.themes.Soft( |
|
primary_hue="blue", |
|
secondary_hue="slate", |
|
neutral_hue="slate", |
|
text_size="sm", |
|
spacing_size="sm", |
|
).set( |
|
background_fill_primary="*neutral_50", |
|
background_fill_secondary="*background_fill_primary", |
|
block_background_fill="*background_fill_primary", |
|
block_border_width="0px", |
|
panel_background_fill="*neutral_50", |
|
panel_border_width="0px", |
|
input_background_fill="*neutral_100", |
|
input_border_color="*neutral_200", |
|
button_primary_background_fill="*primary_300", |
|
button_primary_background_fill_hover="*primary_400", |
|
button_secondary_background_fill="*neutral_200", |
|
button_secondary_background_fill_hover="*neutral_300", |
|
) |
|
custom_css = """ |
|
#main-headertitle { |
|
text-align: center; |
|
margin-top: 15px; |
|
margin-bottom: 10px; |
|
color: var(--neutral-600); |
|
font-weight: 600; |
|
} |
|
#main-header { |
|
text-align: center; |
|
margin-top: 5px; |
|
margin-bottom: 10px; |
|
color: var(--neutral-600); |
|
font-weight: 600; |
|
} |
|
#model-settings-header, #generation-settings-header { |
|
color: var(--neutral-600); |
|
margin-top: 8px; |
|
margin-bottom: 8px; |
|
font-weight: 500; |
|
font-size: 1.1em; |
|
} |
|
.setting-section { |
|
padding: 10px 12px; |
|
border-radius: 6px; |
|
background-color: var(--neutral-50); |
|
margin-bottom: 10px; |
|
border: 1px solid var(--neutral-100); |
|
} |
|
hr { |
|
border: none; |
|
height: 1px; |
|
background-color: var(--neutral-200); |
|
margin: 8px 0; |
|
} |
|
#generate-btn { |
|
width: 100%; |
|
max-width: 250px; |
|
margin: 10px auto; |
|
display: block; |
|
padding: 10px 15px; |
|
font-size: 16px; |
|
border-radius: 5px; |
|
} |
|
#status-box { |
|
min-height: 50px; |
|
display: flex; |
|
align-items: center; |
|
justify-content: center; |
|
padding: 8px; |
|
border-radius: 5px; |
|
border: 1px solid var(--neutral-200); |
|
color: var(--neutral-700); |
|
} |
|
#project-badges { |
|
text-align: center; |
|
margin-top: 30px; |
|
margin-bottom: 20px; |
|
} |
|
#project-badges #badge-container { |
|
display: flex; |
|
gap: 10px; |
|
align-items: center; |
|
justify-content: center; |
|
flex-wrap: wrap; |
|
} |
|
#project-badges img { |
|
border-radius: 5px; |
|
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1); |
|
height: 20px; |
|
transition: transform 0.1s ease, box-shadow 0.1s ease; |
|
} |
|
#project-badges a:hover img { |
|
transform: translateY(-2px); |
|
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.15); |
|
} |
|
#audio-output { |
|
height: 200px; |
|
border-radius: 5px; |
|
border: 1px solid var(--neutral-200); |
|
} |
|
.gradio-dropdown label, .gradio-checkbox label, .gradio-number label, .gradio-textbox label { |
|
font-weight: 500; |
|
color: var(--neutral-700); |
|
font-size: 0.9em; |
|
} |
|
.gradio-row { |
|
gap: 8px; |
|
} |
|
.gradio-block { |
|
margin-bottom: 8px; |
|
} |
|
.setting-section .gradio-block { |
|
margin-bottom: 6px; |
|
} |
|
::-webkit-scrollbar { |
|
width: 8px; |
|
height: 8px; |
|
} |
|
::-webkit-scrollbar-track { |
|
background: var(--neutral-100); |
|
border-radius: 4px; |
|
} |
|
::-webkit-scrollbar-thumb { |
|
background: var(--neutral-300); |
|
border-radius: 4px; |
|
} |
|
::-webkit-scrollbar-thumb:hover { |
|
background: var(--neutral-400); |
|
} |
|
* { |
|
scrollbar-width: thin; |
|
scrollbar-color: var(--neutral-300) var(--neutral-100); |
|
} |
|
""" |
|
with gr.Blocks(title="MeanAudio Generator", theme=theme, css=custom_css) as demo: |
|
gr.Markdown("# MeanAudio: Fast and Faithful Text-to-Audio Generation with Mean Flows", elem_id="main-header") |
|
badge_html = ''' |
|
<div id="project-badges"> <!-- 使用 ID |
|
以便应用 CSS --> |
|
<div id="badge-container"> <!-- 添加这个容器 div 并使用 ID --> |
|
<a href="https://huggingface.co/junxiliu/MeanAudio"> |
|
<img src="https://img.shields.io/badge/Model-HuggingFace-violet?logo=huggingface" alt="Hugging Face Model"> |
|
</a> |
|
<a href="https://huggingface.co/spaces/chenxie95/MeanAudio"> |
|
<img src="https://img.shields.io/badge/Space-HuggingFace-8A2BE2?logo=huggingface" alt="Hugging Face Space"> |
|
</a> |
|
<a href="https://meanaudio.github.io/"> |
|
<img src="https://img.shields.io/badge/Project-Page-brightred?style=flat" alt="Project Page"> |
|
</a> |
|
<a href="https://github.com/xiquan-li/MeanAudio"> |
|
<img src="https://img.shields.io/badge/Code-GitHub-black?logo=github" alt="GitHub"> |
|
</a> |
|
</div> |
|
</div> |
|
''' |
|
gr.HTML(badge_html) |
|
with gr.Column(elem_classes="setting-section"): |
|
with gr.Row(): |
|
available_variants = ( |
|
list(all_model_cfg.keys()) if all_model_cfg else [] |
|
) |
|
default_variant = ( |
|
'meanaudio_mf' |
|
) |
|
variant = gr.Dropdown( |
|
label="Model Variant", |
|
choices=available_variants, |
|
value=default_variant, |
|
interactive=True, |
|
scale=3, |
|
) |
|
|
|
with gr.Column(elem_classes="setting-section"): |
|
with gr.Row(): |
|
prompt = gr.Textbox( |
|
label="Prompt", |
|
placeholder="Describe the sound you want to generate...", |
|
scale=1, |
|
) |
|
negative_prompt = gr.Textbox( |
|
label="Negative Prompt", |
|
placeholder="Describe sounds you want to avoid...", |
|
value="", |
|
scale=1, |
|
) |
|
with gr.Row(): |
|
duration = gr.Number( |
|
label="Duration (sec)", value=10.0, minimum=0.1, scale=1 |
|
) |
|
cfg_strength = gr.Number( |
|
label="CFG (Meanflow forced to 3)", value=3, minimum=0.0, scale=1 |
|
) |
|
with gr.Row(): |
|
seed = gr.Number( |
|
label="Seed (-1 for random)", value=42, precision=0, scale=1 |
|
) |
|
num_steps = gr.Number( |
|
label="Number of Steps", |
|
value=1, |
|
precision=0, |
|
minimum=1, |
|
scale=1, |
|
) |
|
generate_button = gr.Button("Generate", variant="primary", elem_id="generate-btn") |
|
generate_output_text = gr.Textbox( |
|
label="Result Status", interactive=False, elem_id="status-box" |
|
) |
|
audio_output = gr.Audio( |
|
label="Generated Audio", type="filepath", elem_id="audio-output" |
|
) |
|
generate_button.click( |
|
fn=generate_audio_gradio, |
|
inputs=[ |
|
prompt, |
|
negative_prompt, |
|
duration, |
|
cfg_strength, |
|
num_steps, |
|
seed, |
|
variant, |
|
], |
|
outputs=[generate_output_text, audio_output], |
|
) |
|
audio_examples = [ |
|
["Typing on a keyboard", "", 10.0, 3, 1, 42, "meanaudio_mf"], |
|
["A man speaks followed by a popping noise and laughter", "", 10.0, 3, 1, 42, "meanaudio_mf"], |
|
["Some humming followed by a toilet flushing", "", 10.0, 3, 2, 42, "meanaudio_mf"], |
|
["Rain falling on a hard surface as thunder roars in the distance", "", 10.0, 3, 5, 42, "meanaudio_mf"], |
|
["Food sizzling and oil popping", "", 10.0, 3, 25, 42, "meanaudio_mf"], |
|
["Pots and dishes clanking as a man talks followed by liquid pouring into a container", "", 8.0, 3, 2, 42, "meanaudio_mf"], |
|
["A few seconds of silence then a rasping sound against wood", "", 12.0, 3, 2, 42, "meanaudio_mf"], |
|
["A man speaks as he gives a speech and then the crowd cheers", "", 10.0, 3, 25, 42, "fluxaudio_fm"], |
|
["A goat bleating repeatedly", "", 10.0, 3, 50, 123, "fluxaudio_fm"], |
|
["A speech and gunfire followed by a gun being loaded", "", 10.0, 3, 1, 42, "meanaudio_mf"], |
|
["Tires squealing followed by an engine revving", "", 12.0, 4, 25, 456, "fluxaudio_fm"], |
|
["Hammer slowly hitting the wooden table", "", 10.0, 3.5, 25, 42, "fluxaudio_fm"], |
|
["Dog barking excitedly and man shouting as race car engine roars past", "", 10.0, 3, 1, 42, "meanaudio_mf"], |
|
["A dog barking and a cat mewing and a racing car passes by", "", 12.0, 3, 5, -1, "meanaudio_mf"], |
|
["Whistling with birds chirping", "", 10.0, 4, 50, 42, "fluxaudio_fm"], |
|
] |
|
gr.Examples( |
|
examples=audio_examples, |
|
inputs=[prompt, negative_prompt, duration, cfg_strength, num_steps, seed, variant], |
|
|
|
|
|
examples_per_page=5, |
|
label="Example Prompts", |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|