MeanAudio / infer.py
junxiliu's picture
add needed model with proper LFS tracking
3a1da90
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
import logging
from argparse import ArgumentParser
from pathlib import Path
import torch
import torchaudio
from meanaudio.eval_utils import (ModelConfig, all_model_cfg, generate_mf, generate_fm, setup_eval_logging)
from meanaudio.model.flow_matching import FlowMatching
from meanaudio.model.mean_flow import MeanFlow
from meanaudio.model.networks import MeanAudio, get_mean_audio
from meanaudio.model.utils.features_utils import FeaturesUtils
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
from tqdm import tqdm
log = logging.getLogger()
@torch.inference_mode()
def main():
setup_eval_logging()
parser = ArgumentParser()
parser.add_argument('--variant',
type=str,
default='small_16k_mf',
help='small_16k_mf, small_16k_fm')
parser.add_argument('--prompt', type=str, help='Input prompt', default='')
parser.add_argument('--negative_prompt', type=str, help='Negative prompt', default='')
parser.add_argument('--duration', type=float, default=9.975) # for 312 latents, seq_config should has a duration of 9.975s
parser.add_argument('--cfg_strength', type=float, default=4.5)
parser.add_argument('--num_steps', type=int, default=25)
parser.add_argument('--output', type=Path, help='Output directory', default='./output')
parser.add_argument('--seed', type=int, help='Random seed', default=42)
parser.add_argument('--full_precision', action='store_true')
parser.add_argument('--model_path', type=str, help='Ckpt path of trained model')
parser.add_argument('--encoder_name', choices=['clip', 't5', 't5_clap'], type=str, help='text encoder name')
parser.add_argument('--use_rope', action='store_true', help='Whether or not use position embedding for model')
parser.add_argument('--text_c_dim', type=int, default=512,
help='Dim of the text_features_c, 1024 for pooled T5 and 512 for CLAP')
parser.add_argument('--debug', action='store_true')
parser.add_argument('--use_meanflow', action='store_true', help='Whether or not use mean flow for inference')
args = parser.parse_args()
if args.debug:
import debugpy
debugpy.listen(6666)
print("Waiting for debugger attach (rank 0)...")
debugpy.wait_for_client()
if args.variant not in all_model_cfg:
raise ValueError(f'Unknown model variant: {args.variant}')
model: ModelConfig = all_model_cfg[args.variant] # model is just the model config
seq_cfg = model.seq_cfg
negative_prompt: str = args.negative_prompt
output_dir: str = args.output.expanduser()
seed: int = args.seed
num_steps: int = args.num_steps
duration: float = args.duration
cfg_strength: float = args.cfg_strength
device = 'cpu'
if torch.cuda.is_available():
device = 'cuda'
elif torch.backends.mps.is_available():
device = 'mps'
else:
log.warning('CUDA/MPS are not available, running on CPU')
dtype = torch.float32 if args.full_precision else torch.bfloat16
output_dir.mkdir(parents=True, exist_ok=True)
# load a pretrained model
net: MeanAudio = get_mean_audio(model.model_name,
use_rope=args.use_rope,
text_c_dim=args.text_c_dim).to(device, dtype).eval()
net.load_weights(torch.load(args.model_path, map_location=device, weights_only=True))
log.info(f'Loaded weights from {args.model_path}')
# misc setup
rng = torch.Generator(device=device)
rng.manual_seed(seed)
if args.use_meanflow:
mf = MeanFlow(steps=num_steps)
else:
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)
feature_utils = FeaturesUtils(tod_vae_ckpt=model.vae_path,
enable_conditions=True,
encoder_name=args.encoder_name,
mode=model.mode,
bigvgan_vocoder_ckpt=model.bigvgan_16k_path,
need_vae_encoder=False)
feature_utils = feature_utils.to(device, dtype).eval()
seq_cfg.duration = duration
net.update_seq_lengths(seq_cfg.latent_seq_len)
prompts: str = [args.prompt]
if args.use_meanflow:
for prompt in tqdm(prompts):
log.info(f'Prompt: {prompt}')
log.info(f'Negative prompt: {negative_prompt}')
audios = generate_mf([prompt],
negative_text=[negative_prompt],
feature_utils=feature_utils,
net=net,
mf=mf,
rng=rng,
cfg_strength=cfg_strength)
audio = audios.float().cpu()[0]
safe_filename = prompt.replace(' ', '_').replace('/', '_').replace('.', '')
save_path = output_dir / f'{safe_filename}--numsteps{num_steps}--seed{args.seed}.wav'
torchaudio.save( save_path, audio, seq_cfg.sampling_rate)
log.info(f'Audio saved to {save_path}')
log.info('Memory usage: %.2f GB', torch.cuda.max_memory_allocated() / (2**30))
else:
for prompt in tqdm(prompts):
log.info(f'Prompt: {prompt}')
log.info(f'Negative prompt: {negative_prompt}')
audios = generate_fm([prompt],
negative_text=[negative_prompt],
feature_utils=feature_utils,
net=net,
fm=fm,
rng=rng,
cfg_strength=cfg_strength)
audio = audios.float().cpu()[0]
safe_filename = prompt.replace(' ', '_').replace('/', '_').replace('.', '')
save_path = output_dir / f'{safe_filename}--numsteps{num_steps}--seed{args.seed}.wav'
torchaudio.save(save_path, audio, seq_cfg.sampling_rate)
log.info(f'Audio saved to {save_path}')
log.info('Memory usage: %.2f GB', torch.cuda.max_memory_allocated() / (2**30))
if __name__ == '__main__':
main()