MeanAudio / train.py
junxiliu's picture
add needed model with proper LFS tracking
3a1da90
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
import logging
import math
import random
from datetime import timedelta
from pathlib import Path
from tqdm import tqdm
import hydra
import numpy as np
import torch
import torch.distributed as distributed
from hydra import compose
from hydra.core.hydra_config import HydraConfig
from omegaconf import DictConfig, open_dict
from torch.distributed.elastic.multiprocessing.errors import record
from meanaudio.data.data_setup import setup_training_datasets, setup_val_datasets
from meanaudio.model.sequence_config import CONFIG_16K, CONFIG_44K
from meanaudio.runner_flowmatching import RunnerFlowMatching
from meanaudio.runner_meanflow import RunnerMeanFlow
from meanaudio.sample import sample
from meanaudio.utils.dist_utils import info_if_rank_zero, local_rank, world_size
from meanaudio.utils.logger import TensorboardLogger
from meanaudio.utils.synthesize_ema import synthesize_ema
import os
import wandb
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
log = logging.getLogger()
def distributed_setup():
distributed.init_process_group(backend="nccl", timeout=timedelta(hours=2))
log.info(f'Initialized: local_rank={local_rank}, world_size={world_size}')
return local_rank, world_size
@record
@hydra.main(version_base='1.3.2', config_path='config', config_name='train_config.yaml')
def train(cfg: DictConfig):
# debug setting
if cfg.get("debug", False):
import debugpy
if "RANK" not in os.environ or int(os.environ["RANK"]) == 0:
debugpy.listen(6665)
print(f'Waiting for debugger attach (rank {os.environ["RANK"]})...')
debugpy.wait_for_client()
# initial setup
torch.cuda.set_device(local_rank)
torch.backends.cudnn.benchmark = cfg.cudnn_benchmark
distributed_setup()
num_gpus = world_size
run_dir = HydraConfig.get().run.dir
# patch data dim
seq_cfg = CONFIG_16K # we only support 16k for now
with open_dict(cfg):
cfg.data_dim.latent_seq_len = seq_cfg.latent_seq_len # update sequence config here
# wrap python logger with a tensorboard logger
log = TensorboardLogger(cfg.exp_id,
run_dir,
logging.getLogger(),
is_rank0=(local_rank == 0),
enable_email=cfg.enable_email and not cfg.debug)
info_if_rank_zero(log, f'All configuration: {cfg}')
info_if_rank_zero(log, f'Number of GPUs detected: {num_gpus}')
# number of dataloader workers
info_if_rank_zero(log, f'Number of dataloader workers (per GPU): {cfg.num_workers}')
# Set seeds to ensure the same initialization
torch.manual_seed(cfg.seed)
np.random.seed(cfg.seed)
random.seed(cfg.seed)
# setting up configurations
info_if_rank_zero(log, f'Training configuration: {cfg}')
cfg.batch_size //= num_gpus
info_if_rank_zero(log, f'Batch size (per GPU): {cfg.batch_size}')
# determine time to change max skip
total_iterations = cfg['num_iterations']
# setup datasets
if cfg['text_encoder_name'] == 't5_clap_cat':
cfg['concat_text_fc'] = True
dataset, sampler, loader = setup_training_datasets(cfg)
info_if_rank_zero(log, f'Number of training samples: {len(dataset)}')
info_if_rank_zero(log, f'Number of training batches: {len(loader)}')
val_dataset, val_loader, eval_loader = setup_val_datasets(cfg) # same dataset (val_dataset) but with different dataloader
info_if_rank_zero(log, f'Number of val samples: {len(val_dataset)}')
val_cfg = cfg.data.AudioCaps_val_npz # tsv and memmap dir
# compute and set mean and std
latent_mean, latent_std = torch.load(cfg.data.latent_mean), torch.load(cfg.data.latent_std)
# construct the trainer
if not cfg.use_repa:
if cfg.use_meanflow:
trainer = RunnerMeanFlow(cfg,
log=log,
run_path=run_dir,
for_training=True,
latent_mean=latent_mean,
latent_std=latent_std).enter_train()
else:
trainer = RunnerFlowMatching(cfg,
log=log,
run_path=run_dir,
for_training=True,
latent_mean=latent_mean,
latent_std=latent_std).enter_train()
else:
raise NotImplementedError('REPA is not supported yet')
trainer = RunnerAT_REPA(cfg,
log=log,
run_path=run_dir,
for_training=True,
latent_mean=latent_mean,
latent_std=latent_std).enter_train()
eval_rng_clone = trainer.rng.graphsafe_get_state()
# load previous checkpoint if needed
if cfg['checkpoint'] is not None:
curr_iter = trainer.load_checkpoint(cfg['checkpoint'])
cfg['checkpoint'] = None
info_if_rank_zero(log, 'Model checkpoint loaded!')
else:
# if run_dir exists, load the latest checkpoint
checkpoint = trainer.get_latest_checkpoint_path()
if checkpoint is not None:
curr_iter = trainer.load_checkpoint(checkpoint)
info_if_rank_zero(log, 'Latest checkpoint loaded!')
else:
# load previous network weights if needed
curr_iter = 0
if cfg['weights'] is not None:
info_if_rank_zero(log, 'Loading weights from the disk')
trainer.load_weights(cfg['weights'])
cfg['weights'] = None
else:
info_if_rank_zero(log, 'No checkpoint or weights found, starting from scratch')
# determine max epoch
total_epoch = math.ceil(total_iterations / len(loader))
current_epoch = curr_iter // len(loader)
info_if_rank_zero(log, f'We will approximately use {total_epoch - current_epoch} epochs.')
# training loop
try:
# Need this to select random bases in different workers
np.random.seed(np.random.randint(2**30 - 1) + local_rank * 1000)
while curr_iter < total_iterations:
# Crucial for randomness!
sampler.set_epoch(current_epoch) # guarantee each epoch has different shuffling
current_epoch += 1
log.debug(f'Current epoch: {current_epoch}')
trainer.enter_train()
trainer.log.data_timer.start()
for data in loader:
trainer.train_pass(data, curr_iter)
if (curr_iter + 1) % cfg.val_interval == 0:
# swap into a eval rng state, i.e., use the same seed for every validation pass
train_rng_snapshot = trainer.rng.graphsafe_get_state()
trainer.rng.graphsafe_set_state(eval_rng_clone)
info_if_rank_zero(log, f'Iteration {curr_iter}: validating')
total_loss = 0
n = 0
if cfg.use_repa:
total_diff_loss = 0
total_proj_loss = 0
for data in tqdm(val_loader):
n += 1
if not cfg.use_repa:
mean_loss = trainer.validation_pass(data, curr_iter)
total_loss += mean_loss
else:
mean_loss, diff_loss, proj_loss = trainer.validation_pass(data, curr_iter)
total_loss += mean_loss
total_diff_loss += diff_loss
total_proj_loss += proj_loss
total_loss /= n
if cfg.use_repa:
total_diff_loss /= n
total_proj_loss /= n
if cfg.use_wandb and local_rank == 0:
wandb.log({"val/loss": total_loss})
if cfg.use_repa:
wandb.log({"val/diff_loss": total_diff_loss}, step=curr_iter)
wandb.log({"val/proj_loss": total_proj_loss}, step=curr_iter)
distributed.barrier()
trainer.val_integrator.finalize('val', curr_iter, ignore_timer=True)
trainer.rng.graphsafe_set_state(train_rng_snapshot)
if (curr_iter + 1) % cfg.eval_interval == 0:
save_eval = (curr_iter + 1) % cfg.save_eval_interval == 0
train_rng_snapshot = trainer.rng.graphsafe_get_state()
trainer.rng.graphsafe_set_state(eval_rng_clone)
info_if_rank_zero(log, f'Iteration {curr_iter}: inference')
for data in tqdm(eval_loader):
audio_path = trainer.inference_pass(data,
curr_iter,
val_cfg,
save_eval=save_eval) # path to audio files generated
distributed.barrier()
trainer.rng.graphsafe_set_state(train_rng_snapshot)
trainer.eval(audio_path, curr_iter, val_cfg) # av-bench eval
curr_iter += 1
if curr_iter >= total_iterations:
break
except Exception as e:
log.error(f'Error occurred at iteration {curr_iter}!')
log.critical(e.message if hasattr(e, 'message') else str(e))
raise
finally:
if not cfg.debug:
trainer.save_checkpoint(curr_iter) # finally will always be called
trainer.save_weights(curr_iter)
# Inference pass
del trainer
torch.cuda.empty_cache()
# Synthesize EMA
if local_rank == 0:
log.info(f'Synthesizing EMA with sigma={cfg.ema.default_output_sigma}')
ema_sigma = cfg.ema.default_output_sigma
state_dict = synthesize_ema(cfg, ema_sigma, step=None)
save_dir = Path(run_dir) / f'{cfg.exp_id}_ema_final.pth'
torch.save(state_dict, save_dir)
log.info(f'Synthesized EMA saved to {save_dir}!')
distributed.barrier()
log.info(f'Evaluation: {cfg}')
sample(cfg)
# clean-up
log.complete()
distributed.barrier()
distributed.destroy_process_group()
if __name__ == '__main__':
train()