File size: 5,256 Bytes
acd7cf4
fb9c306
acd7cf4
fb9c306
 
acd7cf4
fb9c306
acd7cf4
 
fb9c306
acd7cf4
 
 
 
 
fb9c306
 
 
acd7cf4
 
 
 
 
 
 
fb9c306
acd7cf4
 
 
 
 
fb9c306
 
 
 
 
 
 
 
 
 
 
acd7cf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb9c306
acd7cf4
 
 
fb9c306
 
 
acd7cf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb9c306
acd7cf4
 
 
 
 
fb9c306
 
 
acd7cf4
fb9c306
 
 
acd7cf4
 
 
 
 
 
 
 
fb9c306
 
acd7cf4
 
 
 
 
 
 
 
 
fb9c306
 
 
acd7cf4
fb9c306
 
 
acd7cf4
 
 
 
fb9c306
 
 
 
 
acd7cf4
 
 
 
 
fb9c306
 
acd7cf4
 
fb9c306
 
 
 
 
 
 
 
 
 
 
 
acd7cf4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import math
import re
from dataclasses import dataclass, field
from typing import Dict, List, Optional

import openai
from openai import APIConnectionError, APITimeoutError, AsyncOpenAI, RateLimitError
from tenacity import (
    retry,
    retry_if_exception_type,
    stop_after_attempt,
    wait_exponential,
)

from graphgen.models.llm.limitter import RPM, TPM
from graphgen.models.llm.tokenizer import Tokenizer
from graphgen.models.llm.topk_token_model import Token, TopkTokenModel


def get_top_response_tokens(response: openai.ChatCompletion) -> List[Token]:
    token_logprobs = response.choices[0].logprobs.content
    tokens = []
    for token_prob in token_logprobs:
        prob = math.exp(token_prob.logprob)
        candidate_tokens = [
            Token(t.token, math.exp(t.logprob)) for t in token_prob.top_logprobs
        ]
        token = Token(token_prob.token, prob, top_candidates=candidate_tokens)
        tokens.append(token)
    return tokens


def filter_think_tags(text: str) -> str:
    """
    Remove <think> tags from the text.
    If the text contains <think> and </think>, it removes everything between them and the tags themselves.
    """
    think_pattern = re.compile(r"<think>.*?</think>", re.DOTALL)
    filtered_text = think_pattern.sub("", text).strip()
    return filtered_text if filtered_text else text.strip()


@dataclass
class OpenAIModel(TopkTokenModel):
    model_name: str = "gpt-4o-mini"
    api_key: str = None
    base_url: str = None

    system_prompt: str = ""
    json_mode: bool = False
    seed: int = None

    token_usage: list = field(default_factory=list)
    request_limit: bool = False
    rpm: RPM = field(default_factory=lambda: RPM(rpm=1000))
    tpm: TPM = field(default_factory=lambda: TPM(tpm=50000))

    tokenizer_instance: Tokenizer = field(default_factory=Tokenizer)

    def __post_init__(self):
        assert self.api_key is not None, "Please provide api key to access openai api."
        self.client = AsyncOpenAI(
            api_key=self.api_key or "dummy", base_url=self.base_url
        )

    def _pre_generate(self, text: str, history: List[str]) -> Dict:
        kwargs = {
            "temperature": self.temperature,
            "top_p": self.topp,
            "max_tokens": self.max_tokens,
        }
        if self.seed:
            kwargs["seed"] = self.seed
        if self.json_mode:
            kwargs["response_format"] = {"type": "json_object"}

        messages = []
        if self.system_prompt:
            messages.append({"role": "system", "content": self.system_prompt})
        messages.append({"role": "user", "content": text})

        if history:
            assert len(history) % 2 == 0, "History should have even number of elements."
            messages = history + messages

        kwargs["messages"] = messages
        return kwargs

    @retry(
        stop=stop_after_attempt(5),
        wait=wait_exponential(multiplier=1, min=4, max=10),
        retry=retry_if_exception_type(
            (RateLimitError, APIConnectionError, APITimeoutError)
        ),
    )
    async def generate_topk_per_token(
        self, text: str, history: Optional[List[str]] = None
    ) -> List[Token]:
        kwargs = self._pre_generate(text, history)
        if self.topk_per_token > 0:
            kwargs["logprobs"] = True
            kwargs["top_logprobs"] = self.topk_per_token

        # Limit max_tokens to 1 to avoid long completions
        kwargs["max_tokens"] = 1

        completion = await self.client.chat.completions.create(  # pylint: disable=E1125
            model=self.model_name, **kwargs
        )

        tokens = get_top_response_tokens(completion)

        return tokens

    @retry(
        stop=stop_after_attempt(5),
        wait=wait_exponential(multiplier=1, min=4, max=10),
        retry=retry_if_exception_type(
            (RateLimitError, APIConnectionError, APITimeoutError)
        ),
    )
    async def generate_answer(
        self, text: str, history: Optional[List[str]] = None, temperature: int = 0
    ) -> str:
        kwargs = self._pre_generate(text, history)
        kwargs["temperature"] = temperature

        prompt_tokens = 0
        for message in kwargs["messages"]:
            prompt_tokens += len(
                self.tokenizer_instance.encode_string(message["content"])
            )
        estimated_tokens = prompt_tokens + kwargs["max_tokens"]

        if self.request_limit:
            await self.rpm.wait(silent=True)
            await self.tpm.wait(estimated_tokens, silent=True)

        completion = await self.client.chat.completions.create(  # pylint: disable=E1125
            model=self.model_name, **kwargs
        )
        if hasattr(completion, "usage"):
            self.token_usage.append(
                {
                    "prompt_tokens": completion.usage.prompt_tokens,
                    "completion_tokens": completion.usage.completion_tokens,
                    "total_tokens": completion.usage.total_tokens,
                }
            )
        return filter_think_tags(completion.choices[0].message.content)

    async def generate_inputs_prob(
        self, text: str, history: Optional[List[str]] = None
    ) -> List[Token]:
        raise NotImplementedError