Spaces:
Runtime error
Runtime error
File size: 13,950 Bytes
acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
import asyncio
import os
import time
from dataclasses import dataclass, field
from typing import Dict, List, Union, cast
import gradio as gr
from tqdm.asyncio import tqdm as tqdm_async
from .models import (
Chunk,
JsonKVStorage,
JsonListStorage,
NetworkXStorage,
OpenAIModel,
Tokenizer,
TraverseStrategy,
)
from .models.storage.base_storage import StorageNameSpace
from .operators import (
extract_kg,
generate_cot,
judge_statement,
quiz,
search_all,
traverse_graph_atomically,
traverse_graph_by_edge,
traverse_graph_for_multi_hop,
)
from .utils import (
compute_content_hash,
create_event_loop,
format_generation_results,
logger,
read_file,
)
sys_path = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
@dataclass
class GraphGen:
unique_id: int = int(time.time())
working_dir: str = os.path.join(sys_path, "cache")
config: Dict = field(default_factory=dict)
# llm
tokenizer_instance: Tokenizer = None
synthesizer_llm_client: OpenAIModel = None
trainee_llm_client: OpenAIModel = None
# text chunking
# TODO: make it configurable
chunk_size: int = 1024
chunk_overlap_size: int = 100
# search
search_config: dict = field(
default_factory=lambda: {"enabled": False, "search_types": ["wikipedia"]}
)
# traversal
traverse_strategy: TraverseStrategy = None
# webui
progress_bar: gr.Progress = None
def __post_init__(self):
self.tokenizer_instance: Tokenizer = Tokenizer(
model_name=self.config["tokenizer"]
)
self.synthesizer_llm_client: OpenAIModel = OpenAIModel(
model_name=os.getenv("SYNTHESIZER_MODEL"),
api_key=os.getenv("SYNTHESIZER_API_KEY"),
base_url=os.getenv("SYNTHESIZER_BASE_URL"),
tokenizer_instance=self.tokenizer_instance,
)
self.trainee_llm_client: OpenAIModel = OpenAIModel(
model_name=os.getenv("TRAINEE_MODEL"),
api_key=os.getenv("TRAINEE_API_KEY"),
base_url=os.getenv("TRAINEE_BASE_URL"),
tokenizer_instance=self.tokenizer_instance,
)
self.search_config = self.config["search"]
if "traverse_strategy" in self.config:
self.traverse_strategy = TraverseStrategy(
**self.config["traverse_strategy"]
)
self.full_docs_storage: JsonKVStorage = JsonKVStorage(
self.working_dir, namespace="full_docs"
)
self.text_chunks_storage: JsonKVStorage = JsonKVStorage(
self.working_dir, namespace="text_chunks"
)
self.graph_storage: NetworkXStorage = NetworkXStorage(
self.working_dir, namespace="graph"
)
self.search_storage: JsonKVStorage = JsonKVStorage(
self.working_dir, namespace="search"
)
self.rephrase_storage: JsonKVStorage = JsonKVStorage(
self.working_dir, namespace="rephrase"
)
self.qa_storage: JsonListStorage = JsonListStorage(
os.path.join(self.working_dir, "data", "graphgen", str(self.unique_id)),
namespace=f"qa-{self.unique_id}",
)
async def async_split_chunks(
self, data: List[Union[List, Dict]], data_type: str
) -> dict:
# TODO: configurable whether to use coreference resolution
if len(data) == 0:
return {}
inserting_chunks = {}
if data_type == "raw":
assert isinstance(data, list) and isinstance(data[0], dict)
# compute hash for each document
new_docs = {
compute_content_hash(doc["content"], prefix="doc-"): {
"content": doc["content"]
}
for doc in data
}
_add_doc_keys = await self.full_docs_storage.filter_keys(
list(new_docs.keys())
)
new_docs = {k: v for k, v in new_docs.items() if k in _add_doc_keys}
if len(new_docs) == 0:
logger.warning("All docs are already in the storage")
return {}
logger.info("[New Docs] inserting %d docs", len(new_docs))
cur_index = 1
doc_number = len(new_docs)
async for doc_key, doc in tqdm_async(
new_docs.items(), desc="[1/4]Chunking documents", unit="doc"
):
chunks = {
compute_content_hash(dp["content"], prefix="chunk-"): {
**dp,
"full_doc_id": doc_key,
}
for dp in self.tokenizer_instance.chunk_by_token_size(
doc["content"], self.chunk_overlap_size, self.chunk_size
)
}
inserting_chunks.update(chunks)
if self.progress_bar is not None:
self.progress_bar(cur_index / doc_number, f"Chunking {doc_key}")
cur_index += 1
_add_chunk_keys = await self.text_chunks_storage.filter_keys(
list(inserting_chunks.keys())
)
inserting_chunks = {
k: v for k, v in inserting_chunks.items() if k in _add_chunk_keys
}
elif data_type == "chunked":
assert isinstance(data, list) and isinstance(data[0], list)
new_docs = {
compute_content_hash("".join(chunk["content"]), prefix="doc-"): {
"content": "".join(chunk["content"])
}
for doc in data
for chunk in doc
}
_add_doc_keys = await self.full_docs_storage.filter_keys(
list(new_docs.keys())
)
new_docs = {k: v for k, v in new_docs.items() if k in _add_doc_keys}
if len(new_docs) == 0:
logger.warning("All docs are already in the storage")
return {}
logger.info("[New Docs] inserting %d docs", len(new_docs))
async for doc in tqdm_async(
data, desc="[1/4]Chunking documents", unit="doc"
):
doc_str = "".join([chunk["content"] for chunk in doc])
for chunk in doc:
chunk_key = compute_content_hash(chunk["content"], prefix="chunk-")
inserting_chunks[chunk_key] = {
**chunk,
"full_doc_id": compute_content_hash(doc_str, prefix="doc-"),
}
_add_chunk_keys = await self.text_chunks_storage.filter_keys(
list(inserting_chunks.keys())
)
inserting_chunks = {
k: v for k, v in inserting_chunks.items() if k in _add_chunk_keys
}
else:
raise ValueError(f"Unknown data type: {data_type}")
await self.full_docs_storage.upsert(new_docs)
await self.text_chunks_storage.upsert(inserting_chunks)
return inserting_chunks
def insert(self):
loop = create_event_loop()
loop.run_until_complete(self.async_insert())
async def async_insert(self):
"""
insert chunks into the graph
"""
input_file = self.config["input_file"]
data_type = self.config["input_data_type"]
data = read_file(input_file)
inserting_chunks = await self.async_split_chunks(data, data_type)
if len(inserting_chunks) == 0:
logger.warning("All chunks are already in the storage")
return
logger.info("[New Chunks] inserting %d chunks", len(inserting_chunks))
logger.info("[Entity and Relation Extraction]...")
_add_entities_and_relations = await extract_kg(
llm_client=self.synthesizer_llm_client,
kg_instance=self.graph_storage,
tokenizer_instance=self.tokenizer_instance,
chunks=[
Chunk(id=k, content=v["content"]) for k, v in inserting_chunks.items()
],
progress_bar=self.progress_bar,
)
if not _add_entities_and_relations:
logger.warning("No entities or relations extracted")
return
await self._insert_done()
async def _insert_done(self):
tasks = []
for storage_instance in [
self.full_docs_storage,
self.text_chunks_storage,
self.graph_storage,
self.search_storage,
]:
if storage_instance is None:
continue
tasks.append(cast(StorageNameSpace, storage_instance).index_done_callback())
await asyncio.gather(*tasks)
def search(self):
loop = create_event_loop()
loop.run_until_complete(self.async_search())
async def async_search(self):
logger.info(
"Search is %s", "enabled" if self.search_config["enabled"] else "disabled"
)
if self.search_config["enabled"]:
logger.info(
"[Search] %s ...", ", ".join(self.search_config["search_types"])
)
all_nodes = await self.graph_storage.get_all_nodes()
all_nodes_names = [node[0] for node in all_nodes]
new_search_entities = await self.full_docs_storage.filter_keys(
all_nodes_names
)
logger.info(
"[Search] Found %d entities to search", len(new_search_entities)
)
_add_search_data = await search_all(
search_types=self.search_config["search_types"],
search_entities=new_search_entities,
)
if _add_search_data:
await self.search_storage.upsert(_add_search_data)
logger.info("[Search] %d entities searched", len(_add_search_data))
# Format search results for inserting
search_results = []
for _, search_data in _add_search_data.items():
search_results.extend(
[
{"content": search_data[key]}
for key in list(search_data.keys())
]
)
# TODO: fix insert after search
await self.async_insert()
def quiz(self):
loop = create_event_loop()
loop.run_until_complete(self.async_quiz())
async def async_quiz(self):
max_samples = self.config["quiz_and_judge_strategy"]["quiz_samples"]
await quiz(
self.synthesizer_llm_client,
self.graph_storage,
self.rephrase_storage,
max_samples,
)
await self.rephrase_storage.index_done_callback()
def judge(self):
loop = create_event_loop()
loop.run_until_complete(self.async_judge())
async def async_judge(self):
re_judge = self.config["quiz_and_judge_strategy"]["re_judge"]
_update_relations = await judge_statement(
self.trainee_llm_client,
self.graph_storage,
self.rephrase_storage,
re_judge,
)
await _update_relations.index_done_callback()
def traverse(self):
loop = create_event_loop()
loop.run_until_complete(self.async_traverse())
async def async_traverse(self):
output_data_type = self.config["output_data_type"]
if output_data_type == "atomic":
results = await traverse_graph_atomically(
self.synthesizer_llm_client,
self.tokenizer_instance,
self.graph_storage,
self.traverse_strategy,
self.text_chunks_storage,
self.progress_bar,
)
elif output_data_type == "multi_hop":
results = await traverse_graph_for_multi_hop(
self.synthesizer_llm_client,
self.tokenizer_instance,
self.graph_storage,
self.traverse_strategy,
self.text_chunks_storage,
self.progress_bar,
)
elif output_data_type == "aggregated":
results = await traverse_graph_by_edge(
self.synthesizer_llm_client,
self.tokenizer_instance,
self.graph_storage,
self.traverse_strategy,
self.text_chunks_storage,
self.progress_bar,
)
else:
raise ValueError(f"Unknown qa_form: {output_data_type}")
results = format_generation_results(
results, output_data_format=self.config["output_data_format"]
)
await self.qa_storage.upsert(results)
await self.qa_storage.index_done_callback()
def generate_reasoning(self, method_params):
loop = create_event_loop()
loop.run_until_complete(self.async_generate_reasoning(method_params))
async def async_generate_reasoning(self, method_params):
results = await generate_cot(
self.graph_storage,
self.synthesizer_llm_client,
method_params=method_params,
)
results = format_generation_results(
results, output_data_format=self.config["output_data_format"]
)
await self.qa_storage.upsert(results)
await self.qa_storage.index_done_callback()
def clear(self):
loop = create_event_loop()
loop.run_until_complete(self.async_clear())
async def async_clear(self):
await self.full_docs_storage.drop()
await self.text_chunks_storage.drop()
await self.search_storage.drop()
await self.graph_storage.clear()
await self.rephrase_storage.drop()
await self.qa_storage.drop()
logger.info("All caches are cleared")
|