GraphGen / graphgen /models /llm /openai_model.py
github-actions[bot]
Auto-sync from demo at Thu Aug 28 10:06:44 UTC 2025
ba8b592
raw
history blame
5.26 kB
import math
import re
from dataclasses import dataclass, field
from typing import Dict, List, Optional
import openai
from openai import APIConnectionError, APITimeoutError, AsyncOpenAI, RateLimitError
from tenacity import (
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from graphgen.models.llm.limitter import RPM, TPM
from graphgen.models.llm.tokenizer import Tokenizer
from graphgen.models.llm.topk_token_model import Token, TopkTokenModel
def get_top_response_tokens(response: openai.ChatCompletion) -> List[Token]:
token_logprobs = response.choices[0].logprobs.content
tokens = []
for token_prob in token_logprobs:
prob = math.exp(token_prob.logprob)
candidate_tokens = [
Token(t.token, math.exp(t.logprob)) for t in token_prob.top_logprobs
]
token = Token(token_prob.token, prob, top_candidates=candidate_tokens)
tokens.append(token)
return tokens
def filter_think_tags(text: str) -> str:
"""
Remove <think> tags from the text.
If the text contains <think> and </think>, it removes everything between them and the tags themselves.
"""
think_pattern = re.compile(r"<think>.*?</think>", re.DOTALL)
filtered_text = think_pattern.sub("", text).strip()
return filtered_text if filtered_text else text.strip()
@dataclass
class OpenAIModel(TopkTokenModel):
model_name: str = "gpt-4o-mini"
api_key: str = None
base_url: str = None
system_prompt: str = ""
json_mode: bool = False
seed: int = None
token_usage: list = field(default_factory=list)
request_limit: bool = False
rpm: RPM = field(default_factory=lambda: RPM(rpm=1000))
tpm: TPM = field(default_factory=lambda: TPM(tpm=50000))
tokenizer_instance: Tokenizer = field(default_factory=Tokenizer)
def __post_init__(self):
assert self.api_key is not None, "Please provide api key to access openai api."
self.client = AsyncOpenAI(
api_key=self.api_key or "dummy", base_url=self.base_url
)
def _pre_generate(self, text: str, history: List[str]) -> Dict:
kwargs = {
"temperature": self.temperature,
"top_p": self.topp,
"max_tokens": self.max_tokens,
}
if self.seed:
kwargs["seed"] = self.seed
if self.json_mode:
kwargs["response_format"] = {"type": "json_object"}
messages = []
if self.system_prompt:
messages.append({"role": "system", "content": self.system_prompt})
messages.append({"role": "user", "content": text})
if history:
assert len(history) % 2 == 0, "History should have even number of elements."
messages = history + messages
kwargs["messages"] = messages
return kwargs
@retry(
stop=stop_after_attempt(5),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type(
(RateLimitError, APIConnectionError, APITimeoutError)
),
)
async def generate_topk_per_token(
self, text: str, history: Optional[List[str]] = None
) -> List[Token]:
kwargs = self._pre_generate(text, history)
if self.topk_per_token > 0:
kwargs["logprobs"] = True
kwargs["top_logprobs"] = self.topk_per_token
# Limit max_tokens to 1 to avoid long completions
kwargs["max_tokens"] = 1
completion = await self.client.chat.completions.create( # pylint: disable=E1125
model=self.model_name, **kwargs
)
tokens = get_top_response_tokens(completion)
return tokens
@retry(
stop=stop_after_attempt(5),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type(
(RateLimitError, APIConnectionError, APITimeoutError)
),
)
async def generate_answer(
self, text: str, history: Optional[List[str]] = None, temperature: int = 0
) -> str:
kwargs = self._pre_generate(text, history)
kwargs["temperature"] = temperature
prompt_tokens = 0
for message in kwargs["messages"]:
prompt_tokens += len(
self.tokenizer_instance.encode_string(message["content"])
)
estimated_tokens = prompt_tokens + kwargs["max_tokens"]
if self.request_limit:
await self.rpm.wait(silent=True)
await self.tpm.wait(estimated_tokens, silent=True)
completion = await self.client.chat.completions.create( # pylint: disable=E1125
model=self.model_name, **kwargs
)
if hasattr(completion, "usage"):
self.token_usage.append(
{
"prompt_tokens": completion.usage.prompt_tokens,
"completion_tokens": completion.usage.completion_tokens,
"total_tokens": completion.usage.total_tokens,
}
)
return filter_think_tags(completion.choices[0].message.content)
async def generate_inputs_prob(
self, text: str, history: Optional[List[str]] = None
) -> List[Token]:
raise NotImplementedError