Spaces:
Running
Running
import asyncio | |
import gradio as gr | |
from tqdm.asyncio import tqdm as tqdm_async | |
from graphgen.models import ( | |
JsonKVStorage, | |
NetworkXStorage, | |
OpenAIModel, | |
Tokenizer, | |
TraverseStrategy, | |
) | |
from graphgen.operators.kg.split_kg import get_batches_with_strategy | |
from graphgen.templates import ( | |
ANSWER_REPHRASING_PROMPT, | |
MULTI_HOP_GENERATION_PROMPT, | |
QUESTION_GENERATION_PROMPT, | |
) | |
from graphgen.utils import compute_content_hash, detect_main_language, logger | |
async def _pre_tokenize( | |
graph_storage: NetworkXStorage, tokenizer: Tokenizer, edges: list, nodes: list | |
) -> tuple: | |
sem = asyncio.Semaphore(1000) | |
async def handle_edge(edge: tuple) -> tuple: | |
async with sem: | |
if "length" not in edge[2]: | |
edge[2]["length"] = len( | |
await asyncio.get_event_loop().run_in_executor( | |
None, tokenizer.encode_string, edge[2]["description"] | |
) | |
) | |
return edge | |
async def handle_node(node: dict) -> dict: | |
async with sem: | |
if "length" not in node[1]: | |
node[1]["length"] = len( | |
await asyncio.get_event_loop().run_in_executor( | |
None, tokenizer.encode_string, node[1]["description"] | |
) | |
) | |
return node | |
new_edges = [] | |
new_nodes = [] | |
for result in tqdm_async( | |
asyncio.as_completed([handle_edge(edge) for edge in edges]), | |
total=len(edges), | |
desc="Pre-tokenizing edges", | |
): | |
new_edge = await result | |
await graph_storage.update_edge(new_edge[0], new_edge[1], new_edge[2]) | |
new_edges.append(new_edge) | |
for result in tqdm_async( | |
asyncio.as_completed([handle_node(node) for node in nodes]), | |
total=len(nodes), | |
desc="Pre-tokenizing nodes", | |
): | |
new_node = await result | |
await graph_storage.update_node(new_node[0], new_node[1]) | |
new_nodes.append(new_node) | |
await graph_storage.index_done_callback() | |
return new_edges, new_nodes | |
async def _construct_rephrasing_prompt( | |
_process_nodes: list, | |
_process_edges: list, | |
text_chunks_storage: JsonKVStorage, | |
add_context: bool = False, | |
) -> str: | |
entities = [ | |
f"{_process_node['node_id']}: {_process_node['description']}" | |
for _process_node in _process_nodes | |
] | |
relations = [ | |
f"{_process_edge[0]} -- {_process_edge[1]}: {_process_edge[2]['description']}" | |
for _process_edge in _process_edges | |
] | |
entities_str = "\n".join( | |
[f"{index + 1}. {entity}" for index, entity in enumerate(entities)] | |
) | |
relations_str = "\n".join( | |
[f"{index + 1}. {relation}" for index, relation in enumerate(relations)] | |
) | |
language = ( | |
"Chinese" | |
if detect_main_language(entities_str + relations_str) == "zh" | |
else "English" | |
) | |
if add_context: | |
original_ids = [ | |
node["source_id"].split("<SEP>")[0] for node in _process_nodes | |
] + [edge[2]["source_id"].split("<SEP>")[0] for edge in _process_edges] | |
original_ids = list(set(original_ids)) | |
original_text = await text_chunks_storage.get_by_ids(original_ids) | |
original_text = "\n".join( | |
[ | |
f"{index + 1}. {text['content']}" | |
for index, text in enumerate(original_text) | |
] | |
) | |
prompt = ANSWER_REPHRASING_PROMPT[language]["CONTEXT_TEMPLATE"].format( | |
language=language, | |
original_text=original_text, | |
entities=entities_str, | |
relationships=relations_str, | |
) | |
return prompt | |
prompt = ANSWER_REPHRASING_PROMPT[language]["TEMPLATE"].format( | |
language=language, entities=entities_str, relationships=relations_str | |
) | |
return prompt | |
def get_average_loss(batch: tuple, loss_strategy: str) -> float: | |
try: | |
if loss_strategy == "only_edge": | |
return sum(edge[2]["loss"] for edge in batch[1]) / len(batch[1]) | |
if loss_strategy == "both": | |
return sum(edge[2]["loss"] for edge in batch[1]) + sum( | |
node["loss"] for node in batch[0] | |
) / (len(batch[0]) + len(batch[1])) | |
raise ValueError("Invalid loss strategy") | |
except Exception as e: # pylint: disable=broad-except | |
logger.error("Error calculating average loss: %s", e) | |
return -1.0 | |
def _post_process_synthetic_data(data): | |
block = data.split("\n\n") | |
qas = [] | |
for line in block: | |
if "Question:" in line and "Answer:" in line: | |
question = line.split("Question:")[1].split("Answer:")[0].strip() | |
answer = line.split("Answer:")[1].strip() | |
qas.append({"question": question, "answer": answer}) | |
elif "问题:" in line and "答案:" in line: | |
question = line.split("问题:")[1].split("答案:")[0].strip() | |
answer = line.split("答案:")[1].strip() | |
qas.append({"question": question, "answer": answer}) | |
elif "问题:" in line and "回答:" in line: | |
question = line.split("问题:")[1].split("回答:")[0].strip() | |
answer = line.split("回答:")[1].strip() | |
qas.append({"question": question, "answer": answer}) | |
return qas | |
async def traverse_graph_by_edge( | |
llm_client: OpenAIModel, | |
tokenizer: Tokenizer, | |
graph_storage: NetworkXStorage, | |
traverse_strategy: TraverseStrategy, | |
text_chunks_storage: JsonKVStorage, | |
progress_bar: gr.Progress = None, | |
max_concurrent: int = 1000, | |
) -> dict: | |
""" | |
Traverse the graph | |
:param llm_client | |
:param tokenizer | |
:param graph_storage | |
:param traverse_strategy | |
:param text_chunks_storage | |
:param progress_bar | |
:param max_concurrent | |
:return: question and answer | |
""" | |
semaphore = asyncio.Semaphore(max_concurrent) | |
async def _process_nodes_and_edges( | |
_process_nodes: list, | |
_process_edges: list, | |
) -> str: | |
prompt = await _construct_rephrasing_prompt( | |
_process_nodes, _process_edges, text_chunks_storage, add_context=False | |
) | |
context = await llm_client.generate_answer(prompt) | |
# post-process the context | |
if context.startswith("Rephrased Text:"): | |
context = context[len("Rephrased Text:") :].strip() | |
elif context.startswith("重述文本:"): | |
context = context[len("重述文本:") :].strip() | |
return context | |
async def _process_single_batch( | |
_process_batch: tuple, question_type: str = "single" | |
) -> dict: | |
async with semaphore: | |
context = await _process_nodes_and_edges( | |
_process_batch[0], | |
_process_batch[1], | |
) | |
language = "Chinese" if detect_main_language(context) == "zh" else "English" | |
pre_length = sum(node["length"] for node in _process_batch[0]) + sum( | |
edge[2]["length"] for edge in _process_batch[1] | |
) | |
if question_type == "single": | |
question = await llm_client.generate_answer( | |
QUESTION_GENERATION_PROMPT[language]["SINGLE_TEMPLATE"].format( | |
answer=context | |
) | |
) | |
if question.startswith("Question:"): | |
question = question[len("Question:") :].strip() | |
elif question.startswith("问题:"): | |
question = question[len("问题:") :].strip() | |
logger.info( | |
"%d nodes and %d edges processed", | |
len(_process_batch[0]), | |
len(_process_batch[1]), | |
) | |
logger.info("Pre-length: %s", pre_length) | |
logger.info("Question: %s", question) | |
logger.info("Answer: %s", context) | |
return { | |
compute_content_hash(context): { | |
"question": question, | |
"answer": context, | |
"loss": get_average_loss( | |
_process_batch, traverse_strategy.loss_strategy | |
), | |
} | |
} | |
content = await llm_client.generate_answer( | |
QUESTION_GENERATION_PROMPT[language]["MULTI_TEMPLATE"].format( | |
doc=context | |
) | |
) | |
qas = _post_process_synthetic_data(content) | |
if len(qas) == 0: | |
print(content) | |
logger.error( | |
"Error occurred while processing batch, question or answer is None" | |
) | |
return {} | |
final_results = {} | |
logger.info( | |
"%d nodes and %d edges processed", | |
len(_process_batch[0]), | |
len(_process_batch[1]), | |
) | |
logger.info("Pre-length: %s", pre_length) | |
for qa in qas: | |
logger.info("Question: %s", qa["question"]) | |
logger.info("Answer: %s", qa["answer"]) | |
final_results[compute_content_hash(qa["question"])] = { | |
"question": qa["question"], | |
"answer": qa["answer"], | |
"loss": get_average_loss( | |
_process_batch, traverse_strategy.loss_strategy | |
), | |
} | |
return final_results | |
results = {} | |
edges = list(await graph_storage.get_all_edges()) | |
nodes = list(await graph_storage.get_all_nodes()) | |
edges, nodes = await _pre_tokenize(graph_storage, tokenizer, edges, nodes) | |
processing_batches = await get_batches_with_strategy( | |
nodes, edges, graph_storage, traverse_strategy | |
) | |
for result in tqdm_async( | |
asyncio.as_completed( | |
[_process_single_batch(batch) for batch in processing_batches] | |
), | |
total=len(processing_batches), | |
desc="[4/4]Generating QAs", | |
): | |
try: | |
if progress_bar is not None: | |
progress_bar( | |
len(results) / len(processing_batches), desc="[4/4]Generating QAs" | |
) | |
results.update(await result) | |
if progress_bar is not None and len(results) == len(processing_batches): | |
progress_bar(1, desc="[4/4]Generating QAs") | |
except Exception as e: # pylint: disable=broad-except | |
logger.error("Error occurred while generating QA: %s", e) | |
return results | |
async def traverse_graph_atomically( | |
llm_client: OpenAIModel, | |
tokenizer: Tokenizer, | |
graph_storage: NetworkXStorage, | |
traverse_strategy: TraverseStrategy, | |
text_chunks_storage: JsonKVStorage, | |
progress_bar: gr.Progress = None, | |
max_concurrent: int = 1000, | |
) -> dict: | |
""" | |
Traverse the graph atomicly | |
:param llm_client | |
:param tokenizer | |
:param graph_storage | |
:param traverse_strategy | |
:param text_chunks_storage | |
:param progress_bar | |
:param max_concurrent | |
:return: question and answer | |
""" | |
assert traverse_strategy.qa_form == "atomic" | |
semaphore = asyncio.Semaphore(max_concurrent) | |
async def _generate_question(node_or_edge: tuple): | |
if len(node_or_edge) == 2: | |
des = node_or_edge[0] + ": " + node_or_edge[1]["description"] | |
loss = node_or_edge[1]["loss"] | |
else: | |
des = node_or_edge[2]["description"] | |
loss = node_or_edge[2]["loss"] | |
async with semaphore: | |
try: | |
language = "Chinese" if detect_main_language(des) == "zh" else "English" | |
qa = await llm_client.generate_answer( | |
QUESTION_GENERATION_PROMPT[language]["SINGLE_QA_TEMPLATE"].format( | |
doc=des | |
) | |
) | |
if "Question:" in qa and "Answer:" in qa: | |
question = qa.split("Question:")[1].split("Answer:")[0].strip() | |
answer = qa.split("Answer:")[1].strip() | |
elif "问题:" in qa and "答案:" in qa: | |
question = qa.split("问题:")[1].split("答案:")[0].strip() | |
answer = qa.split("答案:")[1].strip() | |
else: | |
return {} | |
question = question.strip('"') | |
answer = answer.strip('"') | |
logger.info("Question: %s", question) | |
logger.info("Answer: %s", answer) | |
return { | |
compute_content_hash(question): { | |
"question": question, | |
"answer": answer, | |
"loss": loss, | |
} | |
} | |
except Exception as e: # pylint: disable=broad-except | |
logger.error("Error occurred while generating question: %s", e) | |
return {} | |
results = {} | |
edges = list(await graph_storage.get_all_edges()) | |
nodes = list(await graph_storage.get_all_nodes()) | |
edges, nodes = await _pre_tokenize(graph_storage, tokenizer, edges, nodes) | |
tasks = [] | |
for node in nodes: | |
if "<SEP>" in node[1]["description"]: | |
description_list = node[1]["description"].split("<SEP>") | |
for item in description_list: | |
tasks.append((node[0], {"description": item, "loss": node[1]["loss"]})) | |
else: | |
tasks.append((node[0], node[1])) | |
for edge in edges: | |
if "<SEP>" in edge[2]["description"]: | |
description_list = edge[2]["description"].split("<SEP>") | |
for item in description_list: | |
tasks.append( | |
(edge[0], edge[1], {"description": item, "loss": edge[2]["loss"]}) | |
) | |
else: | |
tasks.append((edge[0], edge[1], edge[2])) | |
for result in tqdm_async( | |
asyncio.as_completed([_generate_question(task) for task in tasks]), | |
total=len(tasks), | |
desc="[4/4]Generating QAs", | |
): | |
try: | |
if progress_bar is not None: | |
progress_bar(len(results) / len(tasks), desc="[4/4]Generating QAs") | |
results.update(await result) | |
if progress_bar is not None and len(results) == len(tasks): | |
progress_bar(1, desc="[4/4]Generating QAs") | |
except Exception as e: # pylint: disable=broad-except | |
logger.error("Error occurred while generating QA: %s", e) | |
return results | |
async def traverse_graph_for_multi_hop( | |
llm_client: OpenAIModel, | |
tokenizer: Tokenizer, | |
graph_storage: NetworkXStorage, | |
traverse_strategy: TraverseStrategy, | |
text_chunks_storage: JsonKVStorage, | |
progress_bar: gr.Progress = None, | |
max_concurrent: int = 1000, | |
) -> dict: | |
""" | |
Traverse the graph for multi-hop | |
:param llm_client | |
:param tokenizer | |
:param graph_storage | |
:param traverse_strategy | |
:param text_chunks_storage | |
:param progress_bar | |
:param max_concurrent | |
:return: question and answer | |
""" | |
semaphore = asyncio.Semaphore(max_concurrent) | |
results = {} | |
edges = list(await graph_storage.get_all_edges()) | |
nodes = list(await graph_storage.get_all_nodes()) | |
edges, nodes = await _pre_tokenize(graph_storage, tokenizer, edges, nodes) | |
processing_batches = await get_batches_with_strategy( | |
nodes, edges, graph_storage, traverse_strategy | |
) | |
async def _process_single_batch(_process_batch: tuple) -> dict: | |
async with semaphore: | |
try: | |
language = ( | |
"Chinese" | |
if detect_main_language(_process_batch[0][0]["description"]) == "zh" | |
else "English" | |
) | |
_process_nodes = _process_batch[0] | |
_process_edges = _process_batch[1] | |
entities = [ | |
f"{_process_node['node_id']}: {_process_node['description']}" | |
for _process_node in _process_nodes | |
] | |
relations = [ | |
f"{_process_edge[0]} -- {_process_edge[1]}: {_process_edge[2]['description']}" | |
for _process_edge in _process_edges | |
] | |
entities_str = "\n".join( | |
[f"{index + 1}. {entity}" for index, entity in enumerate(entities)] | |
) | |
relations_str = "\n".join( | |
[ | |
f"{index + 1}. {relation}" | |
for index, relation in enumerate(relations) | |
] | |
) | |
prompt = MULTI_HOP_GENERATION_PROMPT[language].format( | |
entities=entities_str, relationships=relations_str | |
) | |
context = await llm_client.generate_answer(prompt) | |
# post-process the context | |
if "Question:" in context and "Answer:" in context: | |
question = context.split("Question:")[1].split("Answer:")[0].strip() | |
answer = context.split("Answer:")[1].strip() | |
elif "问题:" in context and "答案:" in context: | |
question = context.split("问题:")[1].split("答案:")[0].strip() | |
answer = context.split("答案:")[1].strip() | |
else: | |
return {} | |
question = question.strip('"') | |
answer = answer.strip('"') | |
logger.info("Question: %s", question) | |
logger.info("Answer: %s", answer) | |
return { | |
compute_content_hash(question): { | |
"question": question, | |
"answer": answer, | |
"loss": get_average_loss( | |
_process_batch, traverse_strategy.loss_strategy | |
), | |
} | |
} | |
except Exception as e: # pylint: disable=broad-except | |
logger.error("Error occurred while processing batch: %s", e) | |
return {} | |
async for result in tqdm_async( | |
asyncio.as_completed( | |
[_process_single_batch(batch) for batch in processing_batches] | |
), | |
total=len(processing_batches), | |
desc="[4/4]Generating QAs", | |
): | |
try: | |
if progress_bar is not None: | |
progress_bar( | |
len(results) / len(processing_batches), desc="[4/4]Generating QAs" | |
) | |
results.update(await result) | |
if progress_bar is not None and len(results) == len(processing_batches): | |
progress_bar(1, desc="[4/4]Generating QAs") | |
except Exception as e: # pylint: disable=broad-except | |
logger.error("Error occurred while generating QA: %s", e) | |
return results | |