Spaces:
Running
Running
TEMPLATE_ZH = """根据给定的知识图谱原始信息及已生成的推理路径,产出一条符合模板要求、可直接用于下游训练或推理的 CoT 数据。\ | |
CoT(Chain-of-Thought,思维链)指在回答复杂问题时,把中间推理步骤一步一步显式写出来,使推理过程透明、可追溯,而不是直接给出最终答案。 | |
-输入格式- | |
[Entities:] | |
(实体名:实体描述) | |
... | |
[Relationships:] | |
(来源实体)-[关系描述]->(目标实体) | |
... | |
[Question and Reasoning Path:] | |
(问题) | |
(推理路径) | |
-输出要求- | |
1. 每一步只完成一个不可分割的子任务,并用自然语言衔接,但是要避免生硬的连接词。 | |
2. 使用中文。 | |
3. 不要使用有序列表或编号。 | |
4. 请直接给出答案,不要生成无关信息。 | |
-真实数据- | |
输入: | |
[Entities:]: | |
{entities} | |
[Relationships:]: | |
{relationships} | |
[Question:]: | |
{question} | |
[Reasoning_Template:]: | |
{reasoning_template} | |
输出: | |
""" | |
TEMPLATE_EN = """Given the raw knowledge graph information and the provided reasoning-path, \ | |
produce one Chain-of-Thought (CoT) sample that strictly follows the template \ | |
and can be directly used for downstream training or inference. | |
CoT (Chain-of-Thought) means that when answering a complex question, the intermediate reasoning steps are \ | |
explicitly written out one by one, making the reasoning process transparent and traceable instead of giving \ | |
only the final answer. | |
-Input Format- | |
[Entities:]: | |
(ENTITY_NAME: ENTITY_DESCRIPTION) | |
... | |
[Relationships:]: | |
(ENTITY_SOURCE)-[RELATIONSHIP_DESCRIPTION]->(ENTITY_TARGET) | |
... | |
[Question and Reasoning Path:]: | |
(QUESTION) | |
(REASONING_PATH) | |
-Output Requirements- | |
1. Each step completes a single, indivisible sub-task and is naturally connected, avoiding abrupt transition words. | |
2. Use English. | |
3. Do not use ordered lists or numbering. | |
4. Do not generate extraneous information, just provide the answer. | |
-Real Data- | |
Input: | |
[Entities:]: | |
{entities} | |
[Relationships:]: | |
{relationships} | |
[Question:]: | |
{question} | |
[Reasoning_Template:]: | |
{reasoning_template} | |
Output: | |
""" | |
COT_GENERATION_PROMPT = { | |
"Chinese": {"TEMPLATE": TEMPLATE_ZH}, | |
"English": {"TEMPLATE": TEMPLATE_EN}, | |
} | |