Spaces:
Running
Running
TEMPLATE_ZH = """你是一位“元推理架构师”。你的任务不是回答问题,\ | |
而是根据给定的知识图谱中的实体和关系的名称以及描述信息,设计一条可复用、可泛化的 CoT 推理路径模板。\ | |
-步骤- | |
1. 实体识别 | |
- 准确地识别[Entities:]章节中的实体信息,包括实体名、实体描述信息。 | |
- 实体信息的一般格式为: | |
(实体名:实体描述) | |
2. 关系识别 | |
- 准确地识别[Relationships:]章节中的关系信息,包括来源实体名、目标实体名、关系描述信息。 | |
- 关系信息的一般格式为: | |
(来源实体名)-[关系描述]->(目标实体名) | |
3. 图结构理解 | |
- 正确地将关系信息中的来源实体名与实体信息关联。 | |
- 根据提供的关系信息还原出图结构。 | |
4. 问题设计 | |
- 围绕知识图谱所表达的“核心主题”设计一个问题。 | |
- 问题必须能在图谱内部通过实体、关系或属性直接验证;避免主观判断。 | |
- 问题应该能够模型足够的思考,充分利用图谱中的实体和关系,避免过于简单或无关的问题。 | |
5. 推理路径生成 | |
- 根据问题设计一个**可被后续模型直接执行的推理蓝图**。 | |
- 保持步骤最小化:每一步只解决一个“不可分割”的子问题。 | |
-约束条件- | |
1. 不要在回答中描述你的思考过程,直接给出回复,只给出问题和推理路径设计,不要生成无关信息。 | |
2. 如果提供的描述信息相互矛盾,请解决矛盾并提供一个单一、连贯的逻辑。 | |
3. 避免使用停用词和过于常见的词汇。 | |
4. 不要出现具体数值或结论,不要出现“识别实体”、“识别关系”这类无意义的操作描述。 | |
5. 使用中文作为输出语言。 | |
6. 输出格式为: | |
问题: | |
推理路径设计: | |
-真实数据- | |
输入: | |
[Entities:]: | |
{entities} | |
[Relationships:]: | |
{relationships} | |
输出: | |
""" | |
TEMPLATE_EN = """You are a “meta-reasoning architect”. \ | |
Your task is NOT to answer the question, but to design a reusable, generalizable CoT reasoning-path \ | |
template based solely on the names and descriptions of entities and \ | |
relationships in the provided knowledge graph. | |
- Steps - | |
1. Entity Recognition | |
- Accurately recognize entity information in the [Entities:] section, including entity names and descriptions. | |
- The general formats for entity information are: | |
(ENTITY_NAME: ENTITY_DESCRIPTION) | |
2. Relationship Recognition | |
- Accurately recognize relationship information in the [Relationships:] section, including source_entity_name, target_entity_name, and relationship descriptions. | |
- The general formats for relationship information are: | |
(SOURCE_ENTITY_NAME)-[RELATIONSHIP_DESCRIPTION]->(TARGET_ENTITY_NAME) | |
3. Graph Structure Understanding | |
- Correctly associate the source entity name in the relationship information with the entity information. | |
- Reconstruct the graph structure based on the provided relationship information. | |
4. Question Design | |
- Design a question around the "core theme" expressed by the knowledge graph. | |
- The question must be verifiable directly within the graph through entities, relationships, or attributes; avoid subjective judgments. | |
- The question should allow the model to think sufficiently, fully utilizing the entities and relationships in the graph, avoiding overly simple or irrelevant questions. | |
5. Reasoning-Path Design | |
- Output a **blueprint that any later model can directly execute**. | |
- Keep steps minimal: each step solves one indivisible sub-problem. | |
- Constraints - | |
1. Do NOT describe your thinking; output only the reasoning-path design. | |
2. If the provided descriptions are contradictory, resolve conflicts and provide a single coherent logic. | |
3. Avoid using stop words and overly common words. | |
4. Do not include specific numerical values or conclusions, \ | |
and DO NOT describing meaningless operations like "Identify the entity" or "Identify the relationship". | |
5. Use English as the output language. | |
6. The output format is: | |
Question: | |
Reasoning-Path Design: | |
Please summarize the information expressed by the knowledge graph based on the following [Entities:] and [Relationships:] provided. | |
- Real Data - | |
Input: | |
[Entities:]: | |
{entities} | |
[Relationships:]: | |
{relationships} | |
Output: | |
""" | |
COT_TEMPLATE_DESIGN_PROMPT = { | |
"Chinese": {"TEMPLATE": TEMPLATE_ZH}, | |
"English": {"TEMPLATE": TEMPLATE_EN}, | |
} | |