File size: 6,487 Bytes
ec2757f
 
 
 
 
 
 
 
 
 
52ecdad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec2757f
 
 
 
 
 
52ecdad
 
 
ec2757f
 
 
 
 
 
 
 
 
52ecdad
 
 
 
 
 
 
 
 
ec2757f
 
52ecdad
 
 
 
 
 
 
 
 
 
 
ec2757f
52ecdad
 
 
ec2757f
 
52ecdad
 
ec2757f
 
52ecdad
 
ec2757f
52ecdad
ec2757f
 
 
52ecdad
 
 
 
 
 
 
 
ec2757f
52ecdad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec2757f
 
52ecdad
 
 
ec2757f
 
 
 
 
5d967c4
 
4de0aea
5d967c4
 
 
 
4de0aea
 
 
 
 
f0bac1b
ec2757f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import requests
import time
import gradio as gr
import os

########################
## Loading the model: ##
#######################
api_key = os.environ.get("HF_API_KEY_INFERENCE")

#7 dimensions:
API_URL1 = "https://api-inference.huggingface.co/models/chernandezc/EEMM_7_categories_WB" #Api endpoint.
headers = {"Authorization": f"Bearer {api_key}"} #Api Key, eqwual for both.


def query1(payload): #Function to use the API.
	response = requests.post(API_URL1, headers=headers, json=payload)
	return response.json() #Return Json.


#3 levels:
API_URL2 = "https://api-inference.huggingface.co/models/chernandezc/EEMM_3_dimensions_1201" #Api endpoint.


def query2(payload): #Function to use the API.
	response = requests.post(API_URL2, headers=headers, json=payload)
	return response.json() #Return Json.

# ##########################################################
# Function to process the output and print classifications #
############################################################
def classify_output(item):

  #Dictionary for dimensions.
    label_dict1 = {
        'LABEL_0': 'Cognition',
        'LABEL_1': 'Affect',
        'LABEL_2': 'Self',
        'LABEL_3': 'Motivation',
        'LABEL_4': 'Attention',
        'LABEL_5': 'Overt_Behavior',
        'LABEL_6': 'Context'
    }

  #Dictionary for levels.
    label_dict2 = {
        'LABEL_0': 'Social',
        'LABEL_1': 'Psychological',
        'LABEL_2': 'Physical'
    }


    output1 = query1({ #Try to query the endpoint.
      "inputs": item,
      })
    output2 = query2({ #Try to query the endpoint.
      "inputs": item,
      })

    # Initial minimal delay
    min_delay = 1  # seconds
    #If model is idle wait and try again.
    while 'error' in output1 or 'error' in output2:
        if 'error' in output1:
            time.sleep(min(output1.get("estimated_time", min_delay), min_delay))
            output1 = query1({"inputs": item})

        if 'error' in output2:
            time.sleep(min(output2.get("estimated_time", min_delay), min_delay))
            output2 = query2({"inputs": item})

    # Store classifications in a list
    classifications1 = []
    classifications2 = []

    # Find the item with the highest score
    highest_score_item1 = max(output1[0], key=lambda x: x['score'])
    highest_score_item2 = max(output2[0], key=lambda x: x['score'])

    for item in output1[0]:
        # Check if the score is greater than or equal to 0.5
        if item['score'] >= 0.5:
            # Append the category and score to the classifications list
            classifications1.append((label_dict1[item['label']], item['score']))

    for item in output2[0]:
        # Check if the score is greater than or equal to 0.5
        if item['score'] >= 0.5:
            # Append the category and score to the classifications list
            classifications2.append((label_dict2[item['label']], item['score']))

    # Construct and print the classification message
    if (classifications1 and classifications2):
        classification_str1 = ', '.join([f"{label} ({score:.2f})" for label, score in classifications1])
        classification_str2 = ', '.join([f"{label} ({score:.2f})" for label, score in classifications2])

        output_clas_and_lev = f"For dimensions: {classification_str1}\nFor levels: {classification_str2}"

        return output_clas_and_lev

    elif classifications1 and not classifications2:
        classification_str1 = ', '.join([f"{label} ({score:.2f})" for label, score in classifications1])

        output_clas_no_lev = f"For dimensions: {classification_str1}\nFor levels: No classifications with a score of 0.5 or higher were found.\nHowever, the highest probability was for: '{label_dict2[highest_score_item2['label']]}' ({round(highest_score_item2['score'],2)})\n Use this classification with caution due to uncertainty"

        return output_clas_no_lev

    elif classifications2 and not classifications1:
        classification_str2 = ', '.join([f"{label} ({score:.2f})" for label, score in classifications2])

        output_lev_no_clas = f"For levels: {classification_str2}\nFor dimensions: No classifications with a score of 0.5 or higher were found.\nHowever, the highest probability was for: '{label_dict1[highest_score_item1['label']]}' ({round(highest_score_item1['score'],2)}) \n  Use this classification with caution due to uncertainty"

        return output_lev_no_clas

    else:
        output_lev_no_no = f"No classification with a score of 0.5 or higher were found for both levels and dimensions\nThe highest probability for dimensions was: '{label_dict1[highest_score_item1['label']]}' ({round(highest_score_item1['score'],2)}\nThe highest probability for level was: '{label_dict2[highest_score_item2['label']]}' ({round(highest_score_item2['score'],2)} \n  Use this classification with caution due to uncertainty"

        return output_lev_no_no
    
    #########################################
    ######## RUN GRADIO APP #################
    #########################################

txtbx = gr.Textbox(value = 'I would like to feel better', label = 'Please enter your item:', container = 'True')
txtbxopt = gr.Textbox(label = 'The item you provided was classified as:', container = 'True')
hf_writer = gr.HuggingFaceDatasetSaver(api_key, 'flagging_EEMM_V05')
demo = gr.Interface(fn=classify_output, inputs=txtbx, outputs=txtbxopt,
                    theme = gr.themes.Soft(primary_hue='orange'),
                    title = 'EEMM Item Classification Machine V 0.5',
                    description = 'This machine is a fine tuned version of DistillBERT. It classifies items in 7 EEMM dimensions following (ref). **Please note that the machine goes idle after a period of inactivity. If this occurs, waking it up may take around 20 seconds. Be patient ;)**',
                    article = 'Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum',
                    allow_flagging = 'manual',
                    flagging_options = ['Wrong category','Lacks a category'],
                    flagging_callback= hf_writer
)
demo.launch()