Spaces:
Runtime error
Runtime error
Nan Xue
commited on
Commit
·
4c954ae
1
Parent(s):
3132f36
update
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- LEGAL.md +0 -0
- LICENSE +21 -0
- README.md +117 -12
- gradio_demo/inference.py +252 -0
- gradio_demo/line_mat_gluestick.py +386 -0
- line_matching/run.py +191 -0
- line_matching/run_list.py +144 -0
- line_matching/two_view_pipeline.py +167 -0
- line_matching/wireframe.py +341 -0
- predictor/predict.py +131 -0
- requirements.txt +21 -0
- scalelsd/.gitignore +10 -0
- scalelsd/__init__.py +2 -0
- scalelsd/base/__init__.py +13 -0
- scalelsd/base/csrc/__init__.py +19 -0
- scalelsd/base/csrc/binding.cpp +5 -0
- scalelsd/base/csrc/linesegment.cu +139 -0
- scalelsd/base/csrc/linesegment.h +26 -0
- scalelsd/base/show/__init__.py +3 -0
- scalelsd/base/show/canvas.py +153 -0
- scalelsd/base/show/cli.py +24 -0
- scalelsd/base/show/painters.py +80 -0
- scalelsd/base/utils/__init__.py +1 -0
- scalelsd/base/utils/logger.py +30 -0
- scalelsd/base/utils/metric_logger.py +77 -0
- scalelsd/base/wireframe.py +110 -0
- scalelsd/encoder/__init__.py +1 -0
- scalelsd/encoder/hafm.py +152 -0
- scalelsd/ssl/backbones/__init__.py +1 -0
- scalelsd/ssl/backbones/build.py +28 -0
- scalelsd/ssl/backbones/dpt/__init__.py +0 -0
- scalelsd/ssl/backbones/dpt/base_model.py +16 -0
- scalelsd/ssl/backbones/dpt/blocks.py +388 -0
- scalelsd/ssl/backbones/dpt/midas_net.py +77 -0
- scalelsd/ssl/backbones/dpt/models.py +115 -0
- scalelsd/ssl/backbones/dpt/transforms.py +231 -0
- scalelsd/ssl/backbones/dpt/vit.py +586 -0
- scalelsd/ssl/backbones/multi_task_head.py +52 -0
- scalelsd/ssl/config/__init__.py +2 -0
- scalelsd/ssl/config/dataset/hpatches_dataset.yaml +105 -0
- scalelsd/ssl/config/dataset/nyu_dataset.yaml +77 -0
- scalelsd/ssl/config/dataset/official_yorkurban_dataset.yaml +75 -0
- scalelsd/ssl/config/dataset/rdnim_dataset.yaml +77 -0
- scalelsd/ssl/config/dataset/synthetic_dataset-1024.yaml +49 -0
- scalelsd/ssl/config/dataset/synthetic_dataset-2k.yaml +50 -0
- scalelsd/ssl/config/dataset/synthetic_dataset-4k.yaml +50 -0
- scalelsd/ssl/config/dataset/synthetic_dataset-large.yaml +50 -0
- scalelsd/ssl/config/dataset/synthetic_dataset.yaml +51 -0
- scalelsd/ssl/config/dataset/wireframe_official_gt copy.yaml +86 -0
- scalelsd/ssl/config/dataset/wireframe_official_gt.yaml +86 -0
LEGAL.md
ADDED
File without changes
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2023 Nan Xue
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -1,12 +1,117 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<div align="center">
|
2 |
+
|
3 |
+
# ScaleLSD: Scalable Deep Line Segment Detection Streamlined
|
4 |
+
|
5 |
+
<!-- <a href="https://code.alipay.com/kezeran.kzr/ScaleLSD"><img src="https://img.shields.io/static/v1?label=Project%20Page&message=Github&color=blue&logo=github-pages"></a> <a href="https://code.alipay.com/kezeran.kzr/ScaleLSD"><img src="https://img.shields.io/badge/ArXiv-250x.xxxxx-brightgreen"></a> <a href="https://code.alipay.com/kezeran.kzr/ScaleLSD"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Model_Card-Huggingface-orange"></a> <a href="https://code.alipay.com/kezeran.kzr/ScaleLSD"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Gradio%20Demo-Huggingface-orange"></a> -->
|
6 |
+
|
7 |
+
<a href="https://ant-research.github.io/scalelsd"><img src="https://img.shields.io/static/v1?label=Project%20Page&message=Github&color=blue&logo=github-pages"></a> <a href="https://arxiv.org/abs/2506.09369"><img src="https://img.shields.io/badge/ArXiv-2506.09369-brightgreen"></a> <a href="https://huggingface.co/cherubicxn/scalelsd"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Model_Card-Huggingface-orange"></a>
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
[Zeran Ke](https://calmke.github.io/)<sup>1,2</sup>, [Bin Tan](https://icetttb.github.io/)<sup>2</sup>, [Xianwei Zheng](https://jszy.whu.edu.cn/zhengxianwei/zh_CN/index.htm)<sup>1</sup>, [Yujun Shen](https://shenyujun.github.io/)<sup>2</sup>, [Tianfu Wu](https://research.ece.ncsu.edu/ivmcl/)<sup>3</sup>, [Nan Xue](https://xuenan.net/)<sup>2†</sup>
|
12 |
+
|
13 |
+
<sup>1</sup>Wuhan University   <sup>2</sup>Ant Group  <sup>3</sup>NC State University
|
14 |
+
|
15 |
+
</div>
|
16 |
+
|
17 |
+
<!-- <img src="assets/teaser.jpg" width="100%"> -->
|
18 |
+
|
19 |
+

|
20 |
+
|
21 |
+
|
22 |
+
## ⚙️ Installtion
|
23 |
+
|
24 |
+
All codes are succefully tested on:
|
25 |
+
|
26 |
+
- Ubuntu 22.04.5 LTS
|
27 |
+
- CUDA 12.1
|
28 |
+
- Python 3.10
|
29 |
+
- Pytorch 2.5.1
|
30 |
+
|
31 |
+
First clone this repo:
|
32 |
+
|
33 |
+
```bash
|
34 |
+
git clone https://github.com/ant-research/scalelsd.git
|
35 |
+
```
|
36 |
+
|
37 |
+
Then create the conda eviroment and install the dependencies:
|
38 |
+
```bash
|
39 |
+
conda create -n scalelsd python=3.10
|
40 |
+
pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu121
|
41 |
+
pip install -r requirements.txt
|
42 |
+
pip install -e . # Install scalelsd locally
|
43 |
+
```
|
44 |
+
|
45 |
+
## 🔥🔍 Gradio Demo
|
46 |
+
|
47 |
+
### Line Segment Detection
|
48 |
+
Before you started, please download our pre-trained [models](https://huggingface.co/cherubicxn/scalelsd) and place them into the `models` folder. Then run the Gradio demo:
|
49 |
+
```bash
|
50 |
+
python -m gradio_demo.inference
|
51 |
+
```
|
52 |
+
|
53 |
+
### Line Matching
|
54 |
+
Because our line matching app is built on GlueStick with our ScaleLSD, you need to install [GlueStick](https://github.com/cvg/GlueStick) and download the weights of the GlueStick model. Then run the Gradio demo:
|
55 |
+
```bash
|
56 |
+
pythonb -m gradio_demo.line_mat_gluestick
|
57 |
+
```
|
58 |
+
|
59 |
+
## 🚗 Inference
|
60 |
+
|
61 |
+
Quickly start use our models for line segment detection by running the following command:
|
62 |
+
```bash
|
63 |
+
python -m predictor.predict --img $[IMAGE_PATH_OR_FODER]
|
64 |
+
```
|
65 |
+
|
66 |
+
You can also specify more params by:
|
67 |
+
|
68 |
+
```bash
|
69 |
+
python -m predictor.predict \
|
70 |
+
--ckpt $[MODEL_PATH] \
|
71 |
+
--img $[IMAGE_PATH_OR_FODER] \
|
72 |
+
--ext $[png/pdf/json] \
|
73 |
+
--threshold 10 \
|
74 |
+
--junction-hm 0.1 \
|
75 |
+
--disable-show
|
76 |
+
```
|
77 |
+
|
78 |
+
```bash
|
79 |
+
OPTIONS:
|
80 |
+
--ckpt CKPT, -c CKPT
|
81 |
+
Path to the checkpoint file.
|
82 |
+
--img IMG, -i IMG Path to the image or folder containing images.
|
83 |
+
--ext EXT, -e EXT Output file extension (png/pdf/json).
|
84 |
+
--threshold THRESHOLD, -t THRESHOLD
|
85 |
+
Threshold for line segment detection.
|
86 |
+
--junction-hm JUNCTION_HM, -jh JUNCTION_HM
|
87 |
+
Junction heatmap threshold.
|
88 |
+
--num-junctions NUM_JUNCTIONS, -nj NUM_JUNCTIONS
|
89 |
+
Max number of junctions to detect.
|
90 |
+
--disable-show Disable showing the results.
|
91 |
+
--use_lsd Use LSD-Rectifier for line segment detection.
|
92 |
+
--use_nms Use Non-Maximum Suppression (NMS) for junction detection.
|
93 |
+
```
|
94 |
+
|
95 |
+
|
96 |
+
## 📖 Related Third-party Projects
|
97 |
+
|
98 |
+
- [HAWPv3](https://github.com/cherubicXN/hawp/tree/main)
|
99 |
+
- [DeepLSD](https://github.com/cvg/DeepLSD)
|
100 |
+
- [Progressive-x](https://github.com/danini/progressive-x/tree/vanishing-points)
|
101 |
+
- [GlueStick](https://github.com/cvg/GlueStick)
|
102 |
+
- [GlueFactory](https://github.com/cvg/glue-factory)
|
103 |
+
- [LiMAP](https://github.com/cvg/limap)
|
104 |
+
|
105 |
+
|
106 |
+
## 📝 Citation
|
107 |
+
|
108 |
+
If you find our work useful in your research, please consider citing:
|
109 |
+
|
110 |
+
```bash
|
111 |
+
@inproceedings{ScaleLSD,
|
112 |
+
title = {ScaleLSD: Scalable Deep Line Segment Detection Streamlined},
|
113 |
+
author = {Zeran Ke and Bin Tan and Xianwei Zheng and Yujun Shen and Tianfu Wu and Nan Xue},
|
114 |
+
booktitle = "IEEE Conference on Computer Vision and Pattern Recognition (CVPR)",
|
115 |
+
year = {2025},
|
116 |
+
}
|
117 |
+
```
|
gradio_demo/inference.py
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import cv2
|
3 |
+
import os
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
import random
|
7 |
+
from pathlib import Path
|
8 |
+
import json
|
9 |
+
|
10 |
+
from scalelsd.ssl.models.detector import ScaleLSD
|
11 |
+
from scalelsd.base import show, WireframeGraph
|
12 |
+
from scalelsd.ssl.misc.train_utils import fix_seeds, load_scalelsd_model
|
13 |
+
|
14 |
+
# Title for the Gradio interface
|
15 |
+
_TITLE = 'Gradio Demo of ScaleLSD for Structured Representation of Images'
|
16 |
+
MAX_SEED = 1000
|
17 |
+
|
18 |
+
|
19 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
20 |
+
"""random seed"""
|
21 |
+
if randomize_seed:
|
22 |
+
seed = random.randint(0, MAX_SEED)
|
23 |
+
return seed
|
24 |
+
|
25 |
+
def stop_run():
|
26 |
+
"""stop run"""
|
27 |
+
return (
|
28 |
+
gr.update(value="Run", variant="primary", visible=True),
|
29 |
+
gr.update(visible=False),
|
30 |
+
)
|
31 |
+
|
32 |
+
def process_image(
|
33 |
+
input_image,
|
34 |
+
model_name='scalelsd-vitbase-v2-train-sa1b.pt',
|
35 |
+
save_name='temp_output',
|
36 |
+
threshold=10,
|
37 |
+
junction_threshold_hm=0.008,
|
38 |
+
num_junctions_inference=512,
|
39 |
+
width=512,
|
40 |
+
height=512,
|
41 |
+
line_width=2,
|
42 |
+
juncs_size=4,
|
43 |
+
whitebg=0.0,
|
44 |
+
draw_junctions_only=False,
|
45 |
+
use_lsd=False,
|
46 |
+
use_nms=False,
|
47 |
+
edge_color='orange',
|
48 |
+
vertex_color='Cyan',
|
49 |
+
output_format='png',
|
50 |
+
seed=0,
|
51 |
+
randomize_seed=False
|
52 |
+
):
|
53 |
+
"""core processing function for image inference"""
|
54 |
+
# set random seed
|
55 |
+
seed = int(randomize_seed_fn(seed, randomize_seed))
|
56 |
+
fix_seeds(seed)
|
57 |
+
|
58 |
+
# initialize model
|
59 |
+
ckpt = "models/" + model_name
|
60 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
61 |
+
model = load_scalelsd_model(ckpt, device)
|
62 |
+
|
63 |
+
# set model parameters
|
64 |
+
model.junction_threshold_hm = junction_threshold_hm
|
65 |
+
model.num_junctions_inference = num_junctions_inference
|
66 |
+
|
67 |
+
# transform input image
|
68 |
+
if isinstance(input_image, np.ndarray):
|
69 |
+
image = cv2.cvtColor(input_image, cv2.COLOR_RGB2GRAY)
|
70 |
+
else:
|
71 |
+
image = cv2.imread(input_image, 0)
|
72 |
+
|
73 |
+
# resize
|
74 |
+
ori_shape = image.shape[:2]
|
75 |
+
image_resized = cv2.resize(image.copy(), (width, height))
|
76 |
+
image_tensor = torch.from_numpy(image_resized).float() / 255.0
|
77 |
+
image_tensor = image_tensor[None, None].to('cuda')
|
78 |
+
|
79 |
+
# meta data
|
80 |
+
meta = {
|
81 |
+
'width': ori_shape[1],
|
82 |
+
'height': ori_shape[0],
|
83 |
+
'filename': '',
|
84 |
+
'use_lsd': use_lsd,
|
85 |
+
'use_nms': use_nms,
|
86 |
+
}
|
87 |
+
|
88 |
+
# inference
|
89 |
+
with torch.no_grad():
|
90 |
+
outputs, _ = model(image_tensor, meta)
|
91 |
+
outputs = outputs[0]
|
92 |
+
|
93 |
+
# visual results
|
94 |
+
painter = show.painters.HAWPainter()
|
95 |
+
painter.confidence_threshold = threshold
|
96 |
+
painter.line_width = line_width
|
97 |
+
painter.marker_size = juncs_size
|
98 |
+
if whitebg > 0.0:
|
99 |
+
show.Canvas.white_overlay = whitebg
|
100 |
+
|
101 |
+
temp_folder = "temp_output"
|
102 |
+
os.makedirs(temp_folder, exist_ok=True)
|
103 |
+
fig_file = f"{temp_folder}/{save_name}.png"
|
104 |
+
with show.image_canvas(input_image, fig_file=fig_file) as ax:
|
105 |
+
if draw_junctions_only:
|
106 |
+
painter.draw_junctions(ax, outputs)
|
107 |
+
else:
|
108 |
+
painter.draw_wireframe(ax, outputs, edge_color=edge_color, vertex_color=vertex_color)
|
109 |
+
# read the result image
|
110 |
+
result_image = cv2.imread(fig_file)
|
111 |
+
|
112 |
+
if output_format != 'png':
|
113 |
+
fig_file = f"{temp_folder}/{save_name}.{output_format}"
|
114 |
+
with show.image_canvas(input_image, fig_file=fig_file) as ax:
|
115 |
+
if draw_junctions_only:
|
116 |
+
painter.draw_junctions(ax, outputs)
|
117 |
+
else:
|
118 |
+
painter.draw_wireframe(ax, outputs, edge_color=edge_color, vertex_color=vertex_color)
|
119 |
+
|
120 |
+
json_file = f"{temp_folder}/{save_name}.json"
|
121 |
+
indices = WireframeGraph.xyxy2indices(outputs['juncs_pred'],outputs['lines_pred'])
|
122 |
+
wireframe = WireframeGraph(outputs['juncs_pred'], outputs['juncs_score'], indices, outputs['lines_score'], outputs['width'], outputs['height'])
|
123 |
+
with open(json_file, 'w') as f:
|
124 |
+
json.dump(wireframe.jsonize(),f)
|
125 |
+
|
126 |
+
|
127 |
+
return result_image[:, :, ::-1], json_file, fig_file
|
128 |
+
|
129 |
+
|
130 |
+
def run_demo():
|
131 |
+
"""create the Gradio demo interface"""
|
132 |
+
css = """
|
133 |
+
#col-container {
|
134 |
+
margin: 0 auto;
|
135 |
+
max-width: 800px;
|
136 |
+
}
|
137 |
+
"""
|
138 |
+
|
139 |
+
with gr.Blocks(css=css, title=_TITLE) as demo:
|
140 |
+
with gr.Column(elem_id="col-container"):
|
141 |
+
gr.Markdown(f'# {_TITLE}')
|
142 |
+
gr.Markdown("Detect wireframe structures in images using ScaleLSD model")
|
143 |
+
|
144 |
+
pid = gr.State()
|
145 |
+
figs_root = "assets/figs"
|
146 |
+
example_images = [os.path.join(figs_root, iname) for iname in os.listdir(figs_root)]
|
147 |
+
|
148 |
+
with gr.Row():
|
149 |
+
input_image = gr.Image(example_images[0], label="Input Image", type="numpy")
|
150 |
+
output_image = gr.Image(label="Detection Result")
|
151 |
+
|
152 |
+
with gr.Row():
|
153 |
+
run_btn = gr.Button(value="Run", variant="primary")
|
154 |
+
stop_btn = gr.Button(value="Stop", variant="stop", visible=False)
|
155 |
+
|
156 |
+
with gr.Row():
|
157 |
+
json_file = gr.File(label="Download JSON Output", type="filepath")
|
158 |
+
image_file = gr.File(label="Download Image Output", type="filepath")
|
159 |
+
|
160 |
+
with gr.Accordion("Advanced Settings", open=True):
|
161 |
+
with gr.Row():
|
162 |
+
model_name = gr.Dropdown(
|
163 |
+
[ckpt for ckpt in os.listdir('models') if ckpt.endswith('.pt')],
|
164 |
+
value='scalelsd-vitbase-v1-train-sa1b.pt',
|
165 |
+
label="Model Selection"
|
166 |
+
)
|
167 |
+
|
168 |
+
with gr.Row():
|
169 |
+
save_name = gr.Textbox('temp_output', label="Save Name", placeholder="Name for saving output files")
|
170 |
+
|
171 |
+
with gr.Row():
|
172 |
+
with gr.Column():
|
173 |
+
threshold = gr.Number(10, label="Line Threshold")
|
174 |
+
junction_threshold_hm = gr.Number(0.008, label="Junction Threshold")
|
175 |
+
num_junctions_inference = gr.Number(1024, label="Max Number of Junctions")
|
176 |
+
width = gr.Number(512, label="Input Width")
|
177 |
+
height = gr.Number(512, label="Input Height")
|
178 |
+
|
179 |
+
with gr.Column():
|
180 |
+
draw_junctions_only = gr.Checkbox(False, label="Show Junctions Only")
|
181 |
+
use_lsd = gr.Checkbox(False, label="Use LSD-Rectifier")
|
182 |
+
use_nms = gr.Checkbox(True, label="Use NMS")
|
183 |
+
output_format = gr.Dropdown(
|
184 |
+
['png', 'jpg', 'pdf'],
|
185 |
+
value='png',
|
186 |
+
label="Output Format"
|
187 |
+
)
|
188 |
+
whitebg = gr.Slider(0.0, 1.0, value=0.7, label="White Background Opacity")
|
189 |
+
line_width = gr.Number(2, label="Line Width")
|
190 |
+
juncs_size = gr.Number(8, label="Junctions Size")
|
191 |
+
|
192 |
+
with gr.Row():
|
193 |
+
edge_color = gr.Dropdown(
|
194 |
+
['orange', 'midnightblue', 'red', 'green'],
|
195 |
+
value='orange',
|
196 |
+
label="Edge Color"
|
197 |
+
)
|
198 |
+
vertex_color = gr.Dropdown(
|
199 |
+
['Cyan', 'deeppink', 'yellow', 'purple'],
|
200 |
+
value='Cyan',
|
201 |
+
label="Vertex Color"
|
202 |
+
)
|
203 |
+
|
204 |
+
with gr.Row():
|
205 |
+
randomize_seed = gr.Checkbox(False, label="Randomize Seed")
|
206 |
+
seed = gr.Slider(0, MAX_SEED, value=42, step=1, label="Seed")
|
207 |
+
|
208 |
+
gr.Examples(
|
209 |
+
examples=example_images,
|
210 |
+
inputs=input_image,
|
211 |
+
)
|
212 |
+
|
213 |
+
# star event handlers
|
214 |
+
run_event = run_btn.click(
|
215 |
+
fn=process_image,
|
216 |
+
inputs=[
|
217 |
+
input_image,
|
218 |
+
model_name,
|
219 |
+
save_name,
|
220 |
+
threshold,
|
221 |
+
junction_threshold_hm,
|
222 |
+
num_junctions_inference,
|
223 |
+
width,
|
224 |
+
height,
|
225 |
+
line_width,
|
226 |
+
juncs_size,
|
227 |
+
whitebg,
|
228 |
+
draw_junctions_only,
|
229 |
+
use_lsd,
|
230 |
+
use_nms,
|
231 |
+
edge_color,
|
232 |
+
vertex_color,
|
233 |
+
output_format,
|
234 |
+
seed,
|
235 |
+
randomize_seed
|
236 |
+
],
|
237 |
+
outputs=[output_image, json_file, image_file],
|
238 |
+
)
|
239 |
+
|
240 |
+
# stop event handlers
|
241 |
+
stop_btn.click(
|
242 |
+
fn=stop_run,
|
243 |
+
outputs=[run_btn, stop_btn],
|
244 |
+
cancels=[run_event],
|
245 |
+
queue=False,
|
246 |
+
)
|
247 |
+
|
248 |
+
|
249 |
+
return demo
|
250 |
+
|
251 |
+
if __name__ == "__main__":
|
252 |
+
run_demo().launch()
|
gradio_demo/line_mat_gluestick.py
ADDED
@@ -0,0 +1,386 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
from os.path import join
|
4 |
+
import sys
|
5 |
+
import numpy as np
|
6 |
+
import cv2
|
7 |
+
import torch
|
8 |
+
from matplotlib import pyplot as plt
|
9 |
+
from tqdm import tqdm
|
10 |
+
import gradio as gr
|
11 |
+
import random
|
12 |
+
|
13 |
+
from gluestick import batch_to_np, numpy_image_to_torch, GLUESTICK_ROOT
|
14 |
+
from gluestick.drawing import plot_images, plot_lines, plot_color_line_matches, plot_keypoints, plot_matches
|
15 |
+
|
16 |
+
from scalelsd.ssl.models.detector import ScaleLSD
|
17 |
+
from scalelsd.base import show, WireframeGraph
|
18 |
+
from scalelsd.ssl.datasets.transforms.homographic_transforms import sample_homography
|
19 |
+
from scalelsd.ssl.misc.train_utils import fix_seeds
|
20 |
+
from line_matching.two_view_pipeline import TwoViewPipeline
|
21 |
+
|
22 |
+
from kornia.geometry import warp_perspective,transform_points
|
23 |
+
|
24 |
+
class HADConfig:
|
25 |
+
num_iter = 1
|
26 |
+
valid_border_margin = 3
|
27 |
+
translation = True
|
28 |
+
rotation = True
|
29 |
+
scale = True
|
30 |
+
perspective = True
|
31 |
+
scaling_amplitude = 0.2
|
32 |
+
perspective_amplitude_x = 0.2
|
33 |
+
perspective_amplitude_y = 0.2
|
34 |
+
allow_artifacts = False
|
35 |
+
patch_ratio = 0.85
|
36 |
+
had_cfg = HADConfig()
|
37 |
+
|
38 |
+
# Evaluation config
|
39 |
+
default_conf = {
|
40 |
+
'name': 'two_view_pipeline',
|
41 |
+
'use_lines': True,
|
42 |
+
'extractor': {
|
43 |
+
'name': 'wireframe',
|
44 |
+
'sp_params': {
|
45 |
+
'force_num_keypoints': False,
|
46 |
+
'max_num_keypoints': 2048,
|
47 |
+
},
|
48 |
+
'wireframe_params': {
|
49 |
+
'merge_points': True,
|
50 |
+
'merge_line_endpoints': True,
|
51 |
+
# 'merge_line_endpoints': False,
|
52 |
+
},
|
53 |
+
'max_n_lines': 512,
|
54 |
+
},
|
55 |
+
'matcher': {
|
56 |
+
'name': 'gluestick',
|
57 |
+
'weights': str(GLUESTICK_ROOT / 'resources' / 'weights' / 'checkpoint_GlueStick_MD.tar'),
|
58 |
+
'trainable': False,
|
59 |
+
},
|
60 |
+
'ground_truth': {
|
61 |
+
'from_pose_depth': False,
|
62 |
+
}
|
63 |
+
}
|
64 |
+
|
65 |
+
# Title for the Gradio interface
|
66 |
+
_TITLE = 'ScaleLSD-GlueStick Line Matching'
|
67 |
+
MAX_SEED = 1000
|
68 |
+
|
69 |
+
def sample_homographics(height, width):
|
70 |
+
|
71 |
+
def scale_homography(H, stride):
|
72 |
+
H_scaled = H.clone()
|
73 |
+
H_scaled[:, :, 2, :2] *= stride
|
74 |
+
H_scaled[:, :, :2, 2] /= stride
|
75 |
+
return H_scaled
|
76 |
+
|
77 |
+
homographic = sample_homography(
|
78 |
+
shape = (height, width),
|
79 |
+
perspective = had_cfg.perspective,
|
80 |
+
scaling = had_cfg.scale,
|
81 |
+
rotation = had_cfg.rotation,
|
82 |
+
translation = had_cfg.translation,
|
83 |
+
scaling_amplitude = had_cfg.scaling_amplitude,
|
84 |
+
perspective_amplitude_x = had_cfg.perspective_amplitude_x,
|
85 |
+
perspective_amplitude_y = had_cfg.perspective_amplitude_y,
|
86 |
+
patch_ratio = had_cfg.patch_ratio,
|
87 |
+
allow_artifacts = False
|
88 |
+
)[0]
|
89 |
+
|
90 |
+
homographic = torch.from_numpy(homographic[None]).float().cuda()
|
91 |
+
homographic_inv = torch.inverse(homographic)
|
92 |
+
|
93 |
+
H = {
|
94 |
+
'h.1': homographic,
|
95 |
+
'ih.1': homographic_inv,
|
96 |
+
}
|
97 |
+
|
98 |
+
return H
|
99 |
+
|
100 |
+
def trans_image_with_homograpy(image):
|
101 |
+
h, w = image.shape[:2]
|
102 |
+
H = sample_homographics(height=h, width=w)
|
103 |
+
|
104 |
+
image_warped = warp_perspective(torch.Tensor(image).permute(2,0,1)[None].cuda(), H['h.1'], (h,w))
|
105 |
+
image_warped_ = image_warped[0].permute(1,2,0).cpu().numpy().astype(np.uint8)
|
106 |
+
plt.imshow(image_warped_)
|
107 |
+
plt.show()
|
108 |
+
return image_warped_
|
109 |
+
|
110 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
111 |
+
"""random seed"""
|
112 |
+
if randomize_seed:
|
113 |
+
seed = random.randint(0, MAX_SEED)
|
114 |
+
return seed
|
115 |
+
|
116 |
+
def stop_run():
|
117 |
+
"""stop run"""
|
118 |
+
return (
|
119 |
+
gr.update(value="Run", variant="primary", visible=True),
|
120 |
+
gr.update(visible=False),
|
121 |
+
)
|
122 |
+
|
123 |
+
def clear_image2():
|
124 |
+
return None # returning None will clear the image component
|
125 |
+
|
126 |
+
def process_image(
|
127 |
+
input_image1='assets/figs/sa_1119229.jpg',
|
128 |
+
input_image2=None,
|
129 |
+
model_name='scalelsd-vitbase-v1-train-sa1b.pt',
|
130 |
+
save_name='temp',
|
131 |
+
threshold=5,
|
132 |
+
junction_threshold_hm=0.008,
|
133 |
+
num_junctions_inference=4096,
|
134 |
+
width=512,
|
135 |
+
height=512,
|
136 |
+
line_width=2,
|
137 |
+
juncs_size=4,
|
138 |
+
whitebg=1.0,
|
139 |
+
draw_junctions_only=False,
|
140 |
+
use_lsd=False,
|
141 |
+
use_nms=False,
|
142 |
+
edge_color='midnightblue',
|
143 |
+
vertex_color='deeppink',
|
144 |
+
output_format='png',
|
145 |
+
seed=0,
|
146 |
+
randomize_seed=False
|
147 |
+
):
|
148 |
+
"""core processing function for image inference"""
|
149 |
+
# set random seed
|
150 |
+
seed = int(randomize_seed_fn(seed, randomize_seed))
|
151 |
+
fix_seeds(seed)
|
152 |
+
|
153 |
+
conf = {
|
154 |
+
'model_name': model_name,
|
155 |
+
'threshold': threshold,
|
156 |
+
'junction_threshold_hm': junction_threshold_hm,
|
157 |
+
'num_junctions_inference': num_junctions_inference,
|
158 |
+
'use_lsd': use_lsd,
|
159 |
+
'use_nms': use_nms,
|
160 |
+
'width': width,
|
161 |
+
'height': height,
|
162 |
+
}
|
163 |
+
|
164 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
165 |
+
pipeline_model = TwoViewPipeline(default_conf).to(device).eval()
|
166 |
+
pipeline_model.extractor.update_conf(conf)
|
167 |
+
|
168 |
+
saveto = f'temp_output/matching_results'
|
169 |
+
image1 = cv2.cvtColor(input_image1, cv2.COLOR_BGR2RGB)
|
170 |
+
cv2.imwrite(f'{saveto}/image.png', image1)
|
171 |
+
input_image1 = f'{saveto}/image.png'
|
172 |
+
if input_image2 is None:
|
173 |
+
image2 = trans_image_with_homograpy(image1)
|
174 |
+
else:
|
175 |
+
image2 = cv2.cvtColor(input_image2, cv2.COLOR_BGR2RGB)
|
176 |
+
cv2.imwrite(f'{saveto}/image2.png', image2)
|
177 |
+
input_image2 = f'{saveto}/image2.png'
|
178 |
+
|
179 |
+
gray0 = cv2.imread(input_image1, 0)
|
180 |
+
gray1 = cv2.imread(input_image2, 0)
|
181 |
+
|
182 |
+
torch_gray0, torch_gray1 = numpy_image_to_torch(gray0), numpy_image_to_torch(gray1)
|
183 |
+
torch_gray0, torch_gray1 = torch_gray0.to(device)[None], torch_gray1.to(device)[None]
|
184 |
+
|
185 |
+
x = {'image0': torch_gray0, 'image1': torch_gray1}
|
186 |
+
pred = pipeline_model(x)
|
187 |
+
|
188 |
+
pred = batch_to_np(pred)
|
189 |
+
kp0, kp1 = pred["keypoints0"], pred["keypoints1"]
|
190 |
+
m0 = pred["matches0"]
|
191 |
+
|
192 |
+
line_seg0, line_seg1 = pred["lines0"], pred["lines1"]
|
193 |
+
line_matches = pred["line_matches0"]
|
194 |
+
|
195 |
+
valid_matches = m0 != -1
|
196 |
+
match_indices = m0[valid_matches]
|
197 |
+
matched_kps0 = kp0[valid_matches]
|
198 |
+
matched_kps1 = kp1[match_indices]
|
199 |
+
|
200 |
+
valid_matches = line_matches != -1
|
201 |
+
match_indices = line_matches[valid_matches]
|
202 |
+
matched_lines0 = line_seg0[valid_matches]
|
203 |
+
matched_lines1 = line_seg1[match_indices]
|
204 |
+
|
205 |
+
img0, img1 = cv2.cvtColor(gray0, cv2.COLOR_GRAY2BGR), cv2.cvtColor(gray1, cv2.COLOR_GRAY2BGR)
|
206 |
+
|
207 |
+
mat_file = f'{saveto}/{save_name}_mat.png'
|
208 |
+
plot_images([img0, img1], dpi=200, pad=2.0)
|
209 |
+
plot_lines([line_seg0, line_seg1], ps=4, lw=2)
|
210 |
+
plt.gcf().canvas.manager.set_window_title('Detected Lines')
|
211 |
+
# plt.tight_layout()
|
212 |
+
plt.savefig(mat_file)
|
213 |
+
det_image = cv2.imread(mat_file)[:,:,::-1]
|
214 |
+
|
215 |
+
det_file = f'{saveto}/{save_name}_mat.png'
|
216 |
+
plot_images([img0, img1], dpi=200, pad=2.0)
|
217 |
+
plot_color_line_matches([matched_lines0, matched_lines1], lw=3)
|
218 |
+
plt.gcf().canvas.manager.set_window_title('Line Matches')
|
219 |
+
# plt.tight_layout()
|
220 |
+
plt.savefig(det_file)
|
221 |
+
mat_image = cv2.imread(det_file)[:,:,::-1]
|
222 |
+
|
223 |
+
show.Canvas.white_overlay = whitebg
|
224 |
+
painter = show.painters.HAWPainter()
|
225 |
+
|
226 |
+
fig_file = f'{saveto}/{save_name}_det1.png'
|
227 |
+
outputs = {'lines_pred': line_seg0.reshape(-1,4)}
|
228 |
+
with show.image_canvas(input_image1, fig_file=fig_file) as ax:
|
229 |
+
painter.draw_wireframe(ax,outputs, edge_color=edge_color, vertex_color=vertex_color)
|
230 |
+
det1_image = cv2.imread(fig_file)[:,:,::-1]
|
231 |
+
|
232 |
+
fig_file = f'{saveto}/{save_name}_det2.png'
|
233 |
+
outputs = {'lines_pred': line_seg1.reshape(-1,4)}
|
234 |
+
with show.image_canvas(input_image2, fig_file=fig_file) as ax:
|
235 |
+
painter.draw_wireframe(ax,outputs, edge_color=edge_color, vertex_color=vertex_color)
|
236 |
+
det2_image = cv2.imread(fig_file)[:,:,::-1]
|
237 |
+
|
238 |
+
return image2[:,:,::-1], mat_image, det_image, det1_image, det2_image, mat_file, det_file
|
239 |
+
|
240 |
+
|
241 |
+
def demo():
|
242 |
+
"""create the Gradio demo interface"""
|
243 |
+
css = """
|
244 |
+
#col-container {
|
245 |
+
margin: 0 auto;
|
246 |
+
max-width: 800px;
|
247 |
+
}
|
248 |
+
"""
|
249 |
+
|
250 |
+
with gr.Blocks(css=css, title=_TITLE) as demo:
|
251 |
+
with gr.Column(elem_id="col-container"):
|
252 |
+
gr.Markdown(f'# {_TITLE}')
|
253 |
+
gr.Markdown("Detect wireframe structures in images using ScaleLSD model")
|
254 |
+
|
255 |
+
pid = gr.State()
|
256 |
+
figs_root = "assets/mat_figs"
|
257 |
+
example_single = [os.path.join(figs_root, 'single', iname) for iname in os.listdir(figs_root+'/single')]
|
258 |
+
example_pairs = [[img, None] for img in example_single]
|
259 |
+
example_pairs += [
|
260 |
+
[os.path.join(figs_root, 'pairs', f'ref_{i}.png'),
|
261 |
+
os.path.join(figs_root, 'pairs', f'tgt_{i}.png')]
|
262 |
+
for i in [10, 72, 76, 95, 149, 151]
|
263 |
+
]
|
264 |
+
|
265 |
+
with gr.Row():
|
266 |
+
input_image1 = gr.Image(example_pairs[0][0], label="Input Image1", type="numpy")
|
267 |
+
input_image2 = gr.Image(label="Input Image2", type="numpy")
|
268 |
+
|
269 |
+
with gr.Row():
|
270 |
+
mat_images = gr.Image(label="Matching Results")
|
271 |
+
with gr.Row():
|
272 |
+
det_images = gr.Image(label="Detection Results")
|
273 |
+
with gr.Row():
|
274 |
+
det_image1 = gr.Image(label="Detection1")
|
275 |
+
det_image2 = gr.Image(label="Detection2")
|
276 |
+
|
277 |
+
with gr.Row():
|
278 |
+
run_btn = gr.Button(value="Run", variant="primary")
|
279 |
+
stop_btn = gr.Button(value="Stop", variant="stop", visible=False)
|
280 |
+
|
281 |
+
with gr.Row():
|
282 |
+
mat_file = gr.File(label="Download Matching Result", type="filepath")
|
283 |
+
det_file = gr.File(label="Download Detection Result", type="filepath")
|
284 |
+
|
285 |
+
with gr.Accordion("Advanced Settings", open=True):
|
286 |
+
with gr.Row():
|
287 |
+
model_name = gr.Dropdown(
|
288 |
+
[ckpt for ckpt in os.listdir('models') if ckpt.endswith('.pt')],
|
289 |
+
value='scalelsd-vitbase-v1-train-sa1b.pt',
|
290 |
+
label="Model Selection"
|
291 |
+
)
|
292 |
+
|
293 |
+
with gr.Row():
|
294 |
+
save_name = gr.Textbox('temp_output', label="Save Name", placeholder="Name for saving output files")
|
295 |
+
|
296 |
+
with gr.Row():
|
297 |
+
with gr.Column():
|
298 |
+
threshold = gr.Number(10, label="Line Threshold")
|
299 |
+
junction_threshold_hm = gr.Number(0.008, label="Junction Threshold")
|
300 |
+
num_junctions_inference = gr.Number(1024, label="Max Number of Junctions")
|
301 |
+
width = gr.Number(512, label="Input Width")
|
302 |
+
height = gr.Number(512, label="Input Height")
|
303 |
+
|
304 |
+
with gr.Column():
|
305 |
+
draw_junctions_only = gr.Checkbox(False, label="Show Junctions Only")
|
306 |
+
use_lsd = gr.Checkbox(False, label="Use LSD-Rectifier")
|
307 |
+
use_nms = gr.Checkbox(True, label="Use NMS")
|
308 |
+
output_format = gr.Dropdown(
|
309 |
+
['png', 'jpg', 'pdf'],
|
310 |
+
value='png',
|
311 |
+
label="Output Format"
|
312 |
+
)
|
313 |
+
whitebg = gr.Slider(0.0, 1.0, value=1.0, label="White Background Opacity")
|
314 |
+
line_width = gr.Number(2, label="Line Width")
|
315 |
+
juncs_size = gr.Number(8, label="Junctions Size")
|
316 |
+
|
317 |
+
with gr.Row():
|
318 |
+
edge_color = gr.Dropdown(
|
319 |
+
['orange', 'midnightblue', 'red', 'green'],
|
320 |
+
value='midnightblue',
|
321 |
+
label="Edge Color"
|
322 |
+
)
|
323 |
+
vertex_color = gr.Dropdown(
|
324 |
+
['Cyan', 'deeppink', 'yellow', 'purple'],
|
325 |
+
value='deeppink',
|
326 |
+
label="Vertex Color"
|
327 |
+
)
|
328 |
+
|
329 |
+
with gr.Row():
|
330 |
+
randomize_seed = gr.Checkbox(False, label="Randomize Seed")
|
331 |
+
seed = gr.Slider(0, MAX_SEED, value=42, step=1, label="Seed")
|
332 |
+
|
333 |
+
gr.Examples(
|
334 |
+
examples=example_pairs,
|
335 |
+
inputs=[input_image1, input_image2]
|
336 |
+
)
|
337 |
+
|
338 |
+
# star event handlers
|
339 |
+
run_event = run_btn.click(
|
340 |
+
fn=process_image,
|
341 |
+
inputs=[
|
342 |
+
input_image1,
|
343 |
+
input_image2,
|
344 |
+
model_name,
|
345 |
+
save_name,
|
346 |
+
threshold,
|
347 |
+
junction_threshold_hm,
|
348 |
+
num_junctions_inference,
|
349 |
+
width,
|
350 |
+
height,
|
351 |
+
line_width,
|
352 |
+
juncs_size,
|
353 |
+
whitebg,
|
354 |
+
draw_junctions_only,
|
355 |
+
use_lsd,
|
356 |
+
use_nms,
|
357 |
+
edge_color,
|
358 |
+
vertex_color,
|
359 |
+
output_format,
|
360 |
+
seed,
|
361 |
+
randomize_seed
|
362 |
+
],
|
363 |
+
outputs=[input_image2, mat_images, det_images, det_image1, det_image2, mat_file, det_file],
|
364 |
+
)
|
365 |
+
|
366 |
+
# stop event handlers
|
367 |
+
stop_btn.click(
|
368 |
+
fn=stop_run,
|
369 |
+
outputs=[run_btn, stop_btn],
|
370 |
+
cancels=[run_event],
|
371 |
+
queue=False,
|
372 |
+
)
|
373 |
+
|
374 |
+
# When image1 changes, image2 is cleared
|
375 |
+
input_image1.change(
|
376 |
+
fn=clear_image2,
|
377 |
+
outputs=input_image2
|
378 |
+
)
|
379 |
+
|
380 |
+
|
381 |
+
return demo
|
382 |
+
|
383 |
+
if __name__ == "__main__":
|
384 |
+
# 启动应用
|
385 |
+
demo = demo()
|
386 |
+
demo.launch()
|
line_matching/run.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
from os.path import join
|
4 |
+
import sys
|
5 |
+
import numpy as np
|
6 |
+
import cv2
|
7 |
+
import torch
|
8 |
+
from matplotlib import pyplot as plt
|
9 |
+
from tqdm import tqdm
|
10 |
+
|
11 |
+
from gluestick import batch_to_np, numpy_image_to_torch, GLUESTICK_ROOT
|
12 |
+
from gluestick.drawing import plot_images, plot_lines, plot_color_line_matches, plot_keypoints, plot_matches
|
13 |
+
from line_matching.two_view_pipeline import TwoViewPipeline
|
14 |
+
|
15 |
+
from scalelsd.base import show, WireframeGraph
|
16 |
+
from scalelsd.ssl.datasets.transforms.homographic_transforms import sample_homography
|
17 |
+
from kornia.geometry import warp_perspective,transform_points
|
18 |
+
|
19 |
+
class HADConfig:
|
20 |
+
num_iter = 1
|
21 |
+
valid_border_margin = 3
|
22 |
+
translation = True
|
23 |
+
rotation = True
|
24 |
+
scale = True
|
25 |
+
perspective = True
|
26 |
+
scaling_amplitude = 0.2
|
27 |
+
perspective_amplitude_x = 0.2
|
28 |
+
perspective_amplitude_y = 0.2
|
29 |
+
allow_artifacts = False
|
30 |
+
patch_ratio = 0.85
|
31 |
+
had_cfg = HADConfig()
|
32 |
+
|
33 |
+
def sample_homographics(height, width):
|
34 |
+
|
35 |
+
def scale_homography(H, stride):
|
36 |
+
H_scaled = H.clone()
|
37 |
+
H_scaled[:, :, 2, :2] *= stride
|
38 |
+
H_scaled[:, :, :2, 2] /= stride
|
39 |
+
return H_scaled
|
40 |
+
|
41 |
+
homographic = sample_homography(
|
42 |
+
shape = (height, width),
|
43 |
+
perspective = had_cfg.perspective,
|
44 |
+
scaling = had_cfg.scale,
|
45 |
+
rotation = had_cfg.rotation,
|
46 |
+
translation = had_cfg.translation,
|
47 |
+
scaling_amplitude = had_cfg.scaling_amplitude,
|
48 |
+
perspective_amplitude_x = had_cfg.perspective_amplitude_x,
|
49 |
+
perspective_amplitude_y = had_cfg.perspective_amplitude_y,
|
50 |
+
patch_ratio = had_cfg.patch_ratio,
|
51 |
+
allow_artifacts = False
|
52 |
+
)[0]
|
53 |
+
|
54 |
+
homographic = torch.from_numpy(homographic[None]).float().cuda()
|
55 |
+
homographic_inv = torch.inverse(homographic)
|
56 |
+
|
57 |
+
H = {
|
58 |
+
'h.1': homographic,
|
59 |
+
'ih.1': homographic_inv,
|
60 |
+
}
|
61 |
+
|
62 |
+
return H
|
63 |
+
|
64 |
+
def trans_image_with_homograpy(image):
|
65 |
+
h, w = image.shape[:2]
|
66 |
+
H = sample_homographics(height=h, width=w)
|
67 |
+
|
68 |
+
image_warped = warp_perspective(torch.Tensor(image).permute(2,0,1)[None].cuda(), H['h.1'], (h,w))
|
69 |
+
image_warped_ = image_warped[0].permute(1,2,0).cpu().numpy().astype(np.uint8)
|
70 |
+
plt.imshow(image_warped_)
|
71 |
+
plt.show()
|
72 |
+
return image_warped_
|
73 |
+
|
74 |
+
|
75 |
+
def main():
|
76 |
+
# Parse input parameters
|
77 |
+
parser = argparse.ArgumentParser(
|
78 |
+
prog='GlueStick Demo',
|
79 |
+
description='Demo app to show the point and line matches obtained by GlueStick')
|
80 |
+
parser.add_argument('-img1', default='assets/figs/sa_1119229.jpg')
|
81 |
+
parser.add_argument('-img2', default=None)
|
82 |
+
parser.add_argument('--max_pts', type=int, default=1000)
|
83 |
+
parser.add_argument('--max_lines', type=int, default=300)
|
84 |
+
parser.add_argument('--model', type=str, default='models/paper-sa1b-997pkgs-model.pt')
|
85 |
+
args = parser.parse_args()
|
86 |
+
|
87 |
+
# important
|
88 |
+
if args.img1 is None and args.img2 is None:
|
89 |
+
raise ValueError("Input at least one path of image1 or image2")
|
90 |
+
|
91 |
+
# Evaluation config
|
92 |
+
conf = {
|
93 |
+
'name': 'two_view_pipeline',
|
94 |
+
'use_lines': True,
|
95 |
+
'extractor': {
|
96 |
+
'name': 'wireframe',
|
97 |
+
'sp_params': {
|
98 |
+
'force_num_keypoints': False,
|
99 |
+
'max_num_keypoints': args.max_pts,
|
100 |
+
},
|
101 |
+
'wireframe_params': {
|
102 |
+
'merge_points': True,
|
103 |
+
'merge_line_endpoints': True,
|
104 |
+
# 'merge_line_endpoints': False,
|
105 |
+
},
|
106 |
+
'max_n_lines': args.max_lines,
|
107 |
+
},
|
108 |
+
'matcher': {
|
109 |
+
'name': 'gluestick',
|
110 |
+
'weights': str(GLUESTICK_ROOT / 'resources' / 'weights' / 'checkpoint_GlueStick_MD.tar'),
|
111 |
+
'trainable': False,
|
112 |
+
},
|
113 |
+
'ground_truth': {
|
114 |
+
'from_pose_depth': False,
|
115 |
+
}
|
116 |
+
}
|
117 |
+
|
118 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
119 |
+
pipeline_model = TwoViewPipeline(conf).to(device).eval()
|
120 |
+
pipeline_model.extractor.update_conf(None)
|
121 |
+
|
122 |
+
saveto = f'temp_output/matching_results'
|
123 |
+
os.makedirs(saveto, exist_ok=True)
|
124 |
+
|
125 |
+
image1 = cv2.cvtColor(cv2.imread(args.img1), cv2.COLOR_BGR2RGB)
|
126 |
+
if args.img2 is None:
|
127 |
+
image2 = trans_image_with_homograpy(image1)
|
128 |
+
cv2.imwrite(f'{saveto}/warped_image.png', image2)
|
129 |
+
args.img2 = f'{saveto}/warped_image.png'
|
130 |
+
|
131 |
+
gray0 = cv2.imread(args.img1, 0)
|
132 |
+
gray1 = cv2.imread(args.img2, 0)
|
133 |
+
|
134 |
+
torch_gray0, torch_gray1 = numpy_image_to_torch(gray0), numpy_image_to_torch(gray1)
|
135 |
+
torch_gray0, torch_gray1 = torch_gray0.to(device)[None], torch_gray1.to(device)[None]
|
136 |
+
|
137 |
+
x = {'image0': torch_gray0, 'image1': torch_gray1}
|
138 |
+
pred = pipeline_model(x)
|
139 |
+
|
140 |
+
pred = batch_to_np(pred)
|
141 |
+
kp0, kp1 = pred["keypoints0"], pred["keypoints1"]
|
142 |
+
m0 = pred["matches0"]
|
143 |
+
|
144 |
+
line_seg0, line_seg1 = pred["lines0"], pred["lines1"]
|
145 |
+
line_matches = pred["line_matches0"]
|
146 |
+
|
147 |
+
valid_matches = m0 != -1
|
148 |
+
match_indices = m0[valid_matches]
|
149 |
+
matched_kps0 = kp0[valid_matches]
|
150 |
+
matched_kps1 = kp1[match_indices]
|
151 |
+
|
152 |
+
valid_matches = line_matches != -1
|
153 |
+
match_indices = line_matches[valid_matches]
|
154 |
+
matched_lines0 = line_seg0[valid_matches]
|
155 |
+
matched_lines1 = line_seg1[match_indices]
|
156 |
+
|
157 |
+
# Plot the matches
|
158 |
+
gray0 = cv2.imread(args.img1, 0)
|
159 |
+
gray1 = cv2.imread(args.img2, 0)
|
160 |
+
img0, img1 = cv2.cvtColor(gray0, cv2.COLOR_GRAY2BGR), cv2.cvtColor(gray1, cv2.COLOR_GRAY2BGR)
|
161 |
+
|
162 |
+
plot_images([img0, img1], dpi=200, pad=2.0)
|
163 |
+
plot_lines([line_seg0, line_seg1], ps=4, lw=2)
|
164 |
+
plt.gcf().canvas.manager.set_window_title('Detected Lines')
|
165 |
+
# plt.tight_layout()
|
166 |
+
plt.savefig(f'{saveto}/det.png')
|
167 |
+
|
168 |
+
plot_images([img0, img1], dpi=200, pad=2.0)
|
169 |
+
plot_color_line_matches([matched_lines0, matched_lines1], lw=3)
|
170 |
+
plt.gcf().canvas.manager.set_window_title('Line Matches')
|
171 |
+
# plt.tight_layout()
|
172 |
+
plt.savefig(f'{saveto}/mat.png')
|
173 |
+
|
174 |
+
whitebg = 1
|
175 |
+
show.Canvas.white_overlay = whitebg
|
176 |
+
painter = show.painters.HAWPainter()
|
177 |
+
|
178 |
+
fig_file = f'{saveto}/det1.png'
|
179 |
+
outputs = {'lines_pred': line_seg0.reshape(-1,4)}
|
180 |
+
with show.image_canvas(args.img1, fig_file=fig_file) as ax:
|
181 |
+
# painter.draw_wireframe(ax,outputs, edge_color='orange', vertex_color='Cyan')
|
182 |
+
painter.draw_wireframe(ax,outputs, edge_color='midnightblue', vertex_color='deeppink')
|
183 |
+
fig_file = f'{saveto}/det2.png'
|
184 |
+
outputs = {'lines_pred': line_seg1.reshape(-1,4)}
|
185 |
+
with show.image_canvas(args.img2, fig_file=fig_file) as ax:
|
186 |
+
painter.draw_wireframe(ax,outputs, edge_color='midnightblue', vertex_color='deeppink')
|
187 |
+
|
188 |
+
|
189 |
+
|
190 |
+
if __name__ == '__main__':
|
191 |
+
main()
|
line_matching/run_list.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
from os.path import join
|
4 |
+
import sys
|
5 |
+
|
6 |
+
import cv2
|
7 |
+
import torch
|
8 |
+
from matplotlib import pyplot as plt
|
9 |
+
from tqdm import tqdm
|
10 |
+
|
11 |
+
from gluestick import batch_to_np, numpy_image_to_torch, GLUESTICK_ROOT
|
12 |
+
from gluestick.drawing import plot_images, plot_lines, plot_color_line_matches, plot_keypoints, plot_matches
|
13 |
+
# from gluestick.models.two_view_pipeline import TwoViewPipeline
|
14 |
+
from line_matching.two_view_pipeline import TwoViewPipeline
|
15 |
+
|
16 |
+
from scalelsd.base import show, WireframeGraph
|
17 |
+
|
18 |
+
def main():
|
19 |
+
# Parse input parameters
|
20 |
+
parser = argparse.ArgumentParser(
|
21 |
+
prog='GlueStick Demo',
|
22 |
+
description='Demo app to show the point and line matches obtained by GlueStick')
|
23 |
+
parser.add_argument('-inum', default=None, type=int)
|
24 |
+
parser.add_argument('-imax', default=None, type=int)
|
25 |
+
parser.add_argument('-img1', default=join('resources' + os.path.sep + 'img1.jpg'))
|
26 |
+
parser.add_argument('-img2', default=join('resources' + os.path.sep + 'img2.jpg'))
|
27 |
+
parser.add_argument('--max_pts', type=int, default=1000)
|
28 |
+
parser.add_argument('--max_lines', type=int, default=300)
|
29 |
+
parser.add_argument('--model', default='scalelsd', type=str)
|
30 |
+
parser.add_argument('--test_root', type=str, default='data-ssl/0images-pre/')
|
31 |
+
args = parser.parse_args()
|
32 |
+
|
33 |
+
# Evaluation config
|
34 |
+
conf = {
|
35 |
+
'name': 'two_view_pipeline',
|
36 |
+
'use_lines': True,
|
37 |
+
'extractor': {
|
38 |
+
'name': 'wireframe',
|
39 |
+
'sp_params': {
|
40 |
+
'force_num_keypoints': False,
|
41 |
+
'max_num_keypoints': args.max_pts,
|
42 |
+
},
|
43 |
+
'wireframe_params': {
|
44 |
+
'merge_points': True,
|
45 |
+
'merge_line_endpoints': True,
|
46 |
+
# 'merge_line_endpoints': False,
|
47 |
+
},
|
48 |
+
'max_n_lines': args.max_lines,
|
49 |
+
},
|
50 |
+
'matcher': {
|
51 |
+
'name': 'gluestick',
|
52 |
+
'weights': str(GLUESTICK_ROOT / 'resources' / 'weights' / 'checkpoint_GlueStick_MD.tar'),
|
53 |
+
'trainable': False,
|
54 |
+
},
|
55 |
+
'ground_truth': {
|
56 |
+
'from_pose_depth': False,
|
57 |
+
}
|
58 |
+
}
|
59 |
+
|
60 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
61 |
+
pipeline_model = TwoViewPipeline(conf).to(device).eval()
|
62 |
+
|
63 |
+
pipeline_model.extractor.update_conf(None)
|
64 |
+
|
65 |
+
md = args.model
|
66 |
+
|
67 |
+
root = args.test_root
|
68 |
+
if args.inum is not None:
|
69 |
+
ids = [args.inum]
|
70 |
+
elif args.imax is not None:
|
71 |
+
ids = range(args.inum, args.imax+1)
|
72 |
+
else:
|
73 |
+
l_imgs = int(len(os.listdir(root))/2)
|
74 |
+
ids = range(l_imgs)
|
75 |
+
|
76 |
+
for id in tqdm(ids):
|
77 |
+
saveto = f'temp_output/matching_results/{md}/{id}'
|
78 |
+
os.makedirs(saveto, exist_ok=True)
|
79 |
+
|
80 |
+
args.img1 = root + f'ref_{str(id)}.png'
|
81 |
+
args.img2 = root + f'tgt_{str(id)}.png'
|
82 |
+
|
83 |
+
gray0 = cv2.imread(args.img1, 0)
|
84 |
+
gray1 = cv2.imread(args.img2, 0)
|
85 |
+
|
86 |
+
torch_gray0, torch_gray1 = numpy_image_to_torch(gray0), numpy_image_to_torch(gray1)
|
87 |
+
torch_gray0, torch_gray1 = torch_gray0.to(device)[None], torch_gray1.to(device)[None]
|
88 |
+
|
89 |
+
x = {'image0': torch_gray0, 'image1': torch_gray1}
|
90 |
+
pred = pipeline_model(x)
|
91 |
+
|
92 |
+
pred = batch_to_np(pred)
|
93 |
+
kp0, kp1 = pred["keypoints0"], pred["keypoints1"]
|
94 |
+
m0 = pred["matches0"]
|
95 |
+
|
96 |
+
line_seg0, line_seg1 = pred["lines0"], pred["lines1"]
|
97 |
+
line_matches = pred["line_matches0"]
|
98 |
+
|
99 |
+
valid_matches = m0 != -1
|
100 |
+
match_indices = m0[valid_matches]
|
101 |
+
matched_kps0 = kp0[valid_matches]
|
102 |
+
matched_kps1 = kp1[match_indices]
|
103 |
+
|
104 |
+
valid_matches = line_matches != -1
|
105 |
+
match_indices = line_matches[valid_matches]
|
106 |
+
matched_lines0 = line_seg0[valid_matches]
|
107 |
+
matched_lines1 = line_seg1[match_indices]
|
108 |
+
|
109 |
+
# Plot the matches
|
110 |
+
gray0 = cv2.imread(args.img1, 0)
|
111 |
+
gray1 = cv2.imread(args.img2, 0)
|
112 |
+
img0, img1 = cv2.cvtColor(gray0, cv2.COLOR_GRAY2BGR), cv2.cvtColor(gray1, cv2.COLOR_GRAY2BGR)
|
113 |
+
|
114 |
+
plot_images([img0, img1], dpi=200, pad=2.0)
|
115 |
+
plot_lines([line_seg0, line_seg1], ps=4, lw=2)
|
116 |
+
plt.gcf().canvas.manager.set_window_title('Detected Lines')
|
117 |
+
# plt.tight_layout()
|
118 |
+
plt.savefig(f'{saveto}/{md}_det_{id}.png')
|
119 |
+
|
120 |
+
plot_images([img0, img1], dpi=200, pad=2.0)
|
121 |
+
plot_color_line_matches([matched_lines0, matched_lines1], lw=3)
|
122 |
+
plt.gcf().canvas.manager.set_window_title('Line Matches')
|
123 |
+
# plt.tight_layout()
|
124 |
+
plt.savefig(f'{saveto}/{md}_mat_{id}.png')
|
125 |
+
|
126 |
+
whitebg = 1
|
127 |
+
show.Canvas.white_overlay = whitebg
|
128 |
+
painter = show.painters.HAWPainter()
|
129 |
+
|
130 |
+
fig_file = f'{saveto}/{md}_det1.png'
|
131 |
+
outputs = {'lines_pred': line_seg0.reshape(-1,4)}
|
132 |
+
with show.image_canvas(args.img1, fig_file=fig_file) as ax:
|
133 |
+
# painter.draw_wireframe(ax,outputs, edge_color='orange', vertex_color='Cyan')
|
134 |
+
painter.draw_wireframe(ax,outputs, edge_color='midnightblue', vertex_color='deeppink')
|
135 |
+
fig_file = f'{saveto}/{md}_det2.png'
|
136 |
+
outputs = {'lines_pred': line_seg1.reshape(-1,4)}
|
137 |
+
with show.image_canvas(args.img2, fig_file=fig_file) as ax:
|
138 |
+
# painter.draw_wireframe(ax,outputs, edge_color='orange', vertex_color='Cyan')
|
139 |
+
painter.draw_wireframe(ax,outputs, edge_color='midnightblue', vertex_color='deeppink')
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
if __name__ == '__main__':
|
144 |
+
main()
|
line_matching/two_view_pipeline.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
A two-view sparse feature matching pipeline.
|
3 |
+
|
4 |
+
This model contains sub-models for each step:
|
5 |
+
feature extraction, feature matching, outlier filtering, pose estimation.
|
6 |
+
Each step is optional, and the features or matches can be provided as input.
|
7 |
+
Default: SuperPoint with nearest neighbor matching.
|
8 |
+
|
9 |
+
Convention for the matches: m0[i] is the index of the keypoint in image 1
|
10 |
+
that corresponds to the keypoint i in image 0. m0[i] = -1 if i is unmatched.
|
11 |
+
"""
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
import torch
|
15 |
+
|
16 |
+
from gluestick import get_model
|
17 |
+
from gluestick.models.base_model import BaseModel
|
18 |
+
from line_matching.wireframe import SPWireframeDescriptor
|
19 |
+
|
20 |
+
|
21 |
+
def keep_quadrant_kp_subset(keypoints, scores, descs, h, w):
|
22 |
+
"""Keep only keypoints in one of the four quadrant of the image."""
|
23 |
+
h2, w2 = h // 2, w // 2
|
24 |
+
w_x = np.random.choice([0, w2])
|
25 |
+
w_y = np.random.choice([0, h2])
|
26 |
+
valid_mask = ((keypoints[..., 0] >= w_x)
|
27 |
+
& (keypoints[..., 0] < w_x + w2)
|
28 |
+
& (keypoints[..., 1] >= w_y)
|
29 |
+
& (keypoints[..., 1] < w_y + h2))
|
30 |
+
keypoints = keypoints[valid_mask][None]
|
31 |
+
scores = scores[valid_mask][None]
|
32 |
+
descs = descs.permute(0, 2, 1)[valid_mask].t()[None]
|
33 |
+
return keypoints, scores, descs
|
34 |
+
|
35 |
+
|
36 |
+
def keep_random_kp_subset(keypoints, scores, descs, num_selected):
|
37 |
+
"""Keep a random subset of keypoints."""
|
38 |
+
num_kp = keypoints.shape[1]
|
39 |
+
selected_kp = torch.randperm(num_kp)[:num_selected]
|
40 |
+
keypoints = keypoints[:, selected_kp]
|
41 |
+
scores = scores[:, selected_kp]
|
42 |
+
descs = descs[:, :, selected_kp]
|
43 |
+
return keypoints, scores, descs
|
44 |
+
|
45 |
+
|
46 |
+
def keep_best_kp_subset(keypoints, scores, descs, num_selected):
|
47 |
+
"""Keep the top num_selected best keypoints."""
|
48 |
+
sorted_indices = torch.sort(scores, dim=1)[1]
|
49 |
+
selected_kp = sorted_indices[:, -num_selected:]
|
50 |
+
keypoints = torch.gather(keypoints, 1,
|
51 |
+
selected_kp[:, :, None].repeat(1, 1, 2))
|
52 |
+
scores = torch.gather(scores, 1, selected_kp)
|
53 |
+
descs = torch.gather(descs, 2,
|
54 |
+
selected_kp[:, None].repeat(1, descs.shape[1], 1))
|
55 |
+
return keypoints, scores, descs
|
56 |
+
|
57 |
+
|
58 |
+
class TwoViewPipeline(BaseModel):
|
59 |
+
default_conf = {
|
60 |
+
'extractor': {
|
61 |
+
'name': 'superpoint',
|
62 |
+
'trainable': False,
|
63 |
+
},
|
64 |
+
'use_lines': False,
|
65 |
+
'use_points': True,
|
66 |
+
'randomize_num_kp': False,
|
67 |
+
'detector': {'name': None},
|
68 |
+
'descriptor': {'name': None},
|
69 |
+
'matcher': {'name': 'nearest_neighbor_matcher'},
|
70 |
+
'filter': {'name': None},
|
71 |
+
'solver': {'name': None},
|
72 |
+
'ground_truth': {
|
73 |
+
'from_pose_depth': False,
|
74 |
+
'from_homography': False,
|
75 |
+
'th_positive': 3,
|
76 |
+
'th_negative': 5,
|
77 |
+
'reward_positive': 1,
|
78 |
+
'reward_negative': -0.25,
|
79 |
+
'is_likelihood_soft': True,
|
80 |
+
'p_random_occluders': 0,
|
81 |
+
'n_line_sampled_pts': 50,
|
82 |
+
'line_perp_dist_th': 5,
|
83 |
+
'overlap_th': 0.2,
|
84 |
+
'min_visibility_th': 0.5
|
85 |
+
},
|
86 |
+
}
|
87 |
+
required_data_keys = ['image0', 'image1']
|
88 |
+
strict_conf = False # need to pass new confs to children models
|
89 |
+
components = [
|
90 |
+
'extractor', 'detector', 'descriptor', 'matcher', 'filter', 'solver']
|
91 |
+
|
92 |
+
def _init(self, conf):
|
93 |
+
if conf.extractor.name:
|
94 |
+
self.extractor = SPWireframeDescriptor(conf.extractor)
|
95 |
+
|
96 |
+
if conf.matcher.name:
|
97 |
+
self.matcher = get_model(conf.matcher.name)(conf.matcher)
|
98 |
+
else:
|
99 |
+
self.required_data_keys += ['matches0']
|
100 |
+
|
101 |
+
if conf.filter.name:
|
102 |
+
self.filter = get_model(conf.filter.name)(conf.filter)
|
103 |
+
|
104 |
+
if conf.solver.name:
|
105 |
+
self.solver = get_model(conf.solver.name)(conf.solver)
|
106 |
+
|
107 |
+
def _forward(self, data):
|
108 |
+
|
109 |
+
def process_siamese(data, i):
|
110 |
+
data_i = {k[:-1]: v for k, v in data.items() if k[-1] == i}
|
111 |
+
if self.conf.extractor.name:
|
112 |
+
pred_i = self.extractor(data_i)
|
113 |
+
else:
|
114 |
+
pred_i = {}
|
115 |
+
if self.conf.detector.name:
|
116 |
+
pred_i = self.detector(data_i)
|
117 |
+
else:
|
118 |
+
for k in ['keypoints', 'keypoint_scores', 'descriptors',
|
119 |
+
'lines', 'line_scores', 'line_descriptors',
|
120 |
+
'valid_lines']:
|
121 |
+
if k in data_i:
|
122 |
+
pred_i[k] = data_i[k]
|
123 |
+
if self.conf.descriptor.name:
|
124 |
+
pred_i = {
|
125 |
+
**pred_i, **self.descriptor({**data_i, **pred_i})}
|
126 |
+
return pred_i
|
127 |
+
|
128 |
+
pred0 = process_siamese(data, '0')
|
129 |
+
pred1 = process_siamese(data, '1')
|
130 |
+
|
131 |
+
pred = {**{k + '0': v for k, v in pred0.items()},
|
132 |
+
**{k + '1': v for k, v in pred1.items()}}
|
133 |
+
|
134 |
+
if self.conf.matcher.name:
|
135 |
+
pred = {**pred, **self.matcher({**data, **pred})}
|
136 |
+
|
137 |
+
if self.conf.filter.name:
|
138 |
+
pred = {**pred, **self.filter({**data, **pred})}
|
139 |
+
|
140 |
+
if self.conf.solver.name:
|
141 |
+
pred = {**pred, **self.solver({**data, **pred})}
|
142 |
+
|
143 |
+
return pred
|
144 |
+
|
145 |
+
def loss(self, pred, data):
|
146 |
+
losses = {}
|
147 |
+
total = 0
|
148 |
+
for k in self.components:
|
149 |
+
if self.conf[k].name:
|
150 |
+
try:
|
151 |
+
losses_ = getattr(self, k).loss(pred, {**pred, **data})
|
152 |
+
except NotImplementedError:
|
153 |
+
continue
|
154 |
+
losses = {**losses, **losses_}
|
155 |
+
total = losses_['total'] + total
|
156 |
+
return {**losses, 'total': total}
|
157 |
+
|
158 |
+
def metrics(self, pred, data):
|
159 |
+
metrics = {}
|
160 |
+
for k in self.components:
|
161 |
+
if self.conf[k].name:
|
162 |
+
try:
|
163 |
+
metrics_ = getattr(self, k).metrics(pred, {**pred, **data})
|
164 |
+
except NotImplementedError:
|
165 |
+
continue
|
166 |
+
metrics = {**metrics, **metrics_}
|
167 |
+
return metrics
|
line_matching/wireframe.py
ADDED
@@ -0,0 +1,341 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
from pytlsd import lsd
|
4 |
+
from sklearn.cluster import DBSCAN
|
5 |
+
import sys
|
6 |
+
|
7 |
+
from gluestick.models.base_model import BaseModel
|
8 |
+
from gluestick.models.superpoint import SuperPoint, sample_descriptors
|
9 |
+
from gluestick.geometry import warp_lines_torch
|
10 |
+
|
11 |
+
from pathlib import Path
|
12 |
+
import copy, cv2
|
13 |
+
import os, glob
|
14 |
+
import scalelsd
|
15 |
+
from scalelsd.ssl.models.detector import ScaleLSD
|
16 |
+
from scalelsd.ssl.misc.train_utils import fix_seeds, load_scalelsd_model
|
17 |
+
|
18 |
+
|
19 |
+
def lines_to_wireframe(lines, line_scores, all_descs, conf):
|
20 |
+
""" Given a set of lines, their score and dense descriptors,
|
21 |
+
merge close-by endpoints and compute a wireframe defined by
|
22 |
+
its junctions and connectivity.
|
23 |
+
Returns:
|
24 |
+
junctions: list of [num_junc, 2] tensors listing all wireframe junctions
|
25 |
+
junc_scores: list of [num_junc] tensors with the junction score
|
26 |
+
junc_descs: list of [dim, num_junc] tensors with the junction descriptors
|
27 |
+
connectivity: list of [num_junc, num_junc] bool arrays with True when 2 junctions are connected
|
28 |
+
new_lines: the new set of [b_size, num_lines, 2, 2] lines
|
29 |
+
lines_junc_idx: a [b_size, num_lines, 2] tensor with the indices of the junctions of each endpoint
|
30 |
+
num_true_junctions: a list of the number of valid junctions for each image in the batch,
|
31 |
+
i.e. before filling with random ones
|
32 |
+
"""
|
33 |
+
b_size, _, _, _ = all_descs.shape
|
34 |
+
device = lines.device
|
35 |
+
endpoints = lines.reshape(b_size, -1, 2)
|
36 |
+
|
37 |
+
(junctions, junc_scores, junc_descs, connectivity, new_lines,
|
38 |
+
lines_junc_idx, num_true_junctions) = [], [], [], [], [], [], []
|
39 |
+
for bs in range(b_size):
|
40 |
+
# Cluster the junctions that are close-by
|
41 |
+
db = DBSCAN(eps=conf.nms_radius, min_samples=1).fit(
|
42 |
+
endpoints[bs].cpu().numpy())
|
43 |
+
clusters = db.labels_
|
44 |
+
n_clusters = len(set(clusters))
|
45 |
+
num_true_junctions.append(n_clusters)
|
46 |
+
|
47 |
+
# Compute the average junction and score for each cluster
|
48 |
+
clusters = torch.tensor(clusters, dtype=torch.long,
|
49 |
+
device=device)
|
50 |
+
new_junc = torch.zeros(n_clusters, 2, dtype=torch.float,
|
51 |
+
device=device)
|
52 |
+
new_junc.scatter_reduce_(0, clusters[:, None].repeat(1, 2),
|
53 |
+
endpoints[bs], reduce='mean',
|
54 |
+
include_self=False)
|
55 |
+
junctions.append(new_junc)
|
56 |
+
new_scores = torch.zeros(n_clusters, dtype=torch.float, device=device)
|
57 |
+
new_scores.scatter_reduce_(
|
58 |
+
0, clusters, torch.repeat_interleave(line_scores[bs], 2),
|
59 |
+
reduce='mean', include_self=False)
|
60 |
+
junc_scores.append(new_scores)
|
61 |
+
|
62 |
+
# Compute the new lines
|
63 |
+
new_lines.append(junctions[-1][clusters].reshape(-1, 2, 2))
|
64 |
+
lines_junc_idx.append(clusters.reshape(-1, 2))
|
65 |
+
|
66 |
+
# Compute the junction connectivity
|
67 |
+
junc_connect = torch.eye(n_clusters, dtype=torch.bool,
|
68 |
+
device=device)
|
69 |
+
pairs = clusters.reshape(-1, 2) # these pairs are connected by a line
|
70 |
+
junc_connect[pairs[:, 0], pairs[:, 1]] = True
|
71 |
+
junc_connect[pairs[:, 1], pairs[:, 0]] = True
|
72 |
+
connectivity.append(junc_connect)
|
73 |
+
|
74 |
+
# Interpolate the new junction descriptors
|
75 |
+
junc_descs.append(sample_descriptors(
|
76 |
+
junctions[-1][None], all_descs[bs:(bs + 1)], 8)[0])
|
77 |
+
|
78 |
+
new_lines = torch.stack(new_lines, dim=0)
|
79 |
+
lines_junc_idx = torch.stack(lines_junc_idx, dim=0)
|
80 |
+
return (junctions, junc_scores, junc_descs, connectivity,
|
81 |
+
new_lines, lines_junc_idx, num_true_junctions)
|
82 |
+
|
83 |
+
|
84 |
+
class SPWireframeDescriptor(BaseModel):
|
85 |
+
default_conf = {
|
86 |
+
'sp_params': {
|
87 |
+
'has_detector': True,
|
88 |
+
'has_descriptor': True,
|
89 |
+
'descriptor_dim': 256,
|
90 |
+
'trainable': False,
|
91 |
+
|
92 |
+
# Inference
|
93 |
+
'return_all': True,
|
94 |
+
'sparse_outputs': True,
|
95 |
+
'nms_radius': 4,
|
96 |
+
'detection_threshold': 0.005,
|
97 |
+
'max_num_keypoints': 1000,
|
98 |
+
'force_num_keypoints': True,
|
99 |
+
'remove_borders': 4,
|
100 |
+
},
|
101 |
+
'wireframe_params': {
|
102 |
+
'merge_points': True,
|
103 |
+
'merge_line_endpoints': True,
|
104 |
+
'nms_radius': 3,
|
105 |
+
'max_n_junctions': 500,
|
106 |
+
},
|
107 |
+
'max_n_lines': 250,
|
108 |
+
'min_length': 15,
|
109 |
+
}
|
110 |
+
required_data_keys = ['image']
|
111 |
+
|
112 |
+
def _init(self, conf):
|
113 |
+
self.conf = conf
|
114 |
+
self.sp = SuperPoint(conf.sp_params)
|
115 |
+
self.extr_conf = {}
|
116 |
+
|
117 |
+
def detect_lsd_lines(self, x, max_n_lines=None):
|
118 |
+
if max_n_lines is None:
|
119 |
+
max_n_lines = self.conf.max_n_lines
|
120 |
+
lines, scores, valid_lines = [], [], []
|
121 |
+
for b in range(len(x)):
|
122 |
+
# For each image on batch
|
123 |
+
img = (x[b].squeeze().cpu().numpy() * 255).astype(np.uint8)
|
124 |
+
if max_n_lines is None:
|
125 |
+
b_segs = lsd(img)
|
126 |
+
else:
|
127 |
+
for s in [0.3, 0.4, 0.5, 0.7, 0.8, 1.0]:
|
128 |
+
b_segs = lsd(img, scale=s)
|
129 |
+
if len(b_segs) >= max_n_lines:
|
130 |
+
break
|
131 |
+
|
132 |
+
segs_length = np.linalg.norm(b_segs[:, 2:4] - b_segs[:, 0:2], axis=1)
|
133 |
+
# Remove short lines
|
134 |
+
b_segs = b_segs[segs_length >= self.conf.min_length]
|
135 |
+
segs_length = segs_length[segs_length >= self.conf.min_length]
|
136 |
+
b_scores = b_segs[:, -1] * np.sqrt(segs_length)
|
137 |
+
# Take the most relevant segments with
|
138 |
+
indices = np.argsort(-b_scores)
|
139 |
+
if max_n_lines is not None:
|
140 |
+
indices = indices[:max_n_lines]
|
141 |
+
lines.append(torch.from_numpy(b_segs[indices, :4].reshape(-1, 2, 2)))
|
142 |
+
scores.append(torch.from_numpy(b_scores[indices]))
|
143 |
+
valid_lines.append(torch.ones_like(scores[-1], dtype=torch.bool))
|
144 |
+
|
145 |
+
lines = torch.stack(lines).to(x)
|
146 |
+
scores = torch.stack(scores).to(x)
|
147 |
+
valid_lines = torch.stack(valid_lines).to(x.device)
|
148 |
+
return lines, scores, valid_lines
|
149 |
+
|
150 |
+
def update_conf(self, conf):
|
151 |
+
self.extr_conf = conf
|
152 |
+
|
153 |
+
def _forward(self, data):
|
154 |
+
b_size, _, h, w = data['image'].shape
|
155 |
+
device = data['image'].device
|
156 |
+
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
157 |
+
|
158 |
+
if not self.conf.sp_params.force_num_keypoints:
|
159 |
+
assert b_size == 1, "Only batch size of 1 accepted for non padded inputs"
|
160 |
+
|
161 |
+
# Line detection
|
162 |
+
if 'lines' not in data or 'line_scores' not in data:
|
163 |
+
if self.extr_conf is None:
|
164 |
+
ckpt = 'models/scalelsd-vitbase-v1-train-sa1b.pt'
|
165 |
+
model = load_scalelsd_model(ckpt, device)
|
166 |
+
model.junction_threshold_hm = 0.008
|
167 |
+
threshold = 5
|
168 |
+
model.num_junctions_inference = 4096
|
169 |
+
size = 512
|
170 |
+
image = data['image']
|
171 |
+
image_size = image.shape[-2:]
|
172 |
+
image_np = image[0,0].cpu().numpy()
|
173 |
+
image_cp = copy.deepcopy(image_np)
|
174 |
+
image_torch = torch.from_numpy(cv2.resize(image_cp, (size, size))).float()
|
175 |
+
image_cuda = image_torch[None,None].to(device)
|
176 |
+
meta = {
|
177 |
+
'width': image_size[1],
|
178 |
+
'height':image_size[0],
|
179 |
+
'filename': '',
|
180 |
+
'use_lsd': False,
|
181 |
+
'use_nms': False,
|
182 |
+
}
|
183 |
+
outputs, _ = model(image_cuda, meta)
|
184 |
+
lines = outputs[0]['lines_pred']
|
185 |
+
line_scores = outputs[0]['lines_score']
|
186 |
+
lines = lines[line_scores>=threshold]
|
187 |
+
line_scores = line_scores[line_scores>=threshold][None]
|
188 |
+
elif self.extr_conf['model_name'] != 'lsd':
|
189 |
+
# initialize model
|
190 |
+
ckpt = "models/" + self.extr_conf['model_name']
|
191 |
+
model = load_scalelsd_model(ckpt, device)
|
192 |
+
# set model parameters
|
193 |
+
model.junction_threshold_hm = self.extr_conf['junction_threshold_hm']
|
194 |
+
model.num_junctions_inference = self.extr_conf['num_junctions_inference']
|
195 |
+
width, height = self.extr_conf['width'], self.extr_conf['height']
|
196 |
+
|
197 |
+
image = data['image']
|
198 |
+
image_size = image.shape[-2:]
|
199 |
+
image_np = image[0,0].cpu().numpy()
|
200 |
+
image_cp = copy.deepcopy(image_np)
|
201 |
+
image_torch = torch.from_numpy(cv2.resize(image_cp, (width, height))).float()
|
202 |
+
image_cuda = image_torch[None,None].to(device)
|
203 |
+
meta = {
|
204 |
+
'width': image_size[1],
|
205 |
+
'height':image_size[0],
|
206 |
+
'filename': '',
|
207 |
+
'use_lsd': self.extr_conf['use_lsd'],
|
208 |
+
'use_nms': self.extr_conf['use_nms'],
|
209 |
+
}
|
210 |
+
outputs, _ = model(image_cuda, meta)
|
211 |
+
lines = outputs[0]['lines_pred']
|
212 |
+
line_scores = outputs[0]['lines_score']
|
213 |
+
lines = lines[line_scores>=self.extr_conf['threshold']]
|
214 |
+
line_scores = line_scores[line_scores>=self.extr_conf['threshold']][None]
|
215 |
+
else:
|
216 |
+
if 'original_img' in data:
|
217 |
+
# Detect more lines, because when projecting them to the image most of them will be discarded
|
218 |
+
lines, line_scores, valid_lines = self.detect_lsd_lines(
|
219 |
+
data['original_img'], self.conf.max_n_lines * 3)
|
220 |
+
# Apply the same transformation that is applied in homography_adaptation
|
221 |
+
lines, valid_lines2 = warp_lines_torch(lines, data['H'], False, data['image'].shape[-2:])
|
222 |
+
valid_lines = valid_lines & valid_lines2
|
223 |
+
lines[~valid_lines] = -1
|
224 |
+
line_scores[~valid_lines] = 0
|
225 |
+
# Re-sort the line segments to pick the ones that are inside the image and have bigger score
|
226 |
+
sorted_scores, sorting_indices = torch.sort(line_scores, dim=-1, descending=True)
|
227 |
+
line_scores = sorted_scores[:, :self.conf.max_n_lines]
|
228 |
+
sorting_indices = sorting_indices[:, :self.conf.max_n_lines]
|
229 |
+
lines = torch.take_along_dim(lines, sorting_indices[..., None, None], 1)
|
230 |
+
valid_lines = torch.take_along_dim(valid_lines, sorting_indices, 1)
|
231 |
+
else:
|
232 |
+
lines, line_scores, valid_lines = self.detect_lsd_lines(data['image'],max_n_lines=1000000)
|
233 |
+
|
234 |
+
else:
|
235 |
+
lines, line_scores, valid_lines = data['lines'], data['line_scores'], data['valid_lines']
|
236 |
+
if line_scores.shape[-1] != 0:
|
237 |
+
line_scores /= (line_scores.new_tensor(1e-8) + line_scores.max(dim=1).values[:, None])
|
238 |
+
|
239 |
+
# SuperPoint prediction
|
240 |
+
pred = self.sp(data)
|
241 |
+
|
242 |
+
# Remove keypoints that are too close to line endpoints
|
243 |
+
if self.conf.wireframe_params.merge_points:
|
244 |
+
kp = pred['keypoints']
|
245 |
+
line_endpts = lines.reshape(b_size, -1, 2)
|
246 |
+
dist_pt_lines = torch.norm(
|
247 |
+
kp[:, :, None] - line_endpts[:, None], dim=-1)
|
248 |
+
# For each keypoint, mark it as valid or to remove
|
249 |
+
pts_to_remove = torch.any(
|
250 |
+
dist_pt_lines < self.conf.sp_params.nms_radius, dim=2)
|
251 |
+
# Simply remove them (we assume batch_size = 1 here)
|
252 |
+
assert len(kp) == 1
|
253 |
+
pred['keypoints'] = pred['keypoints'][0][~pts_to_remove[0]][None]
|
254 |
+
pred['keypoint_scores'] = pred['keypoint_scores'][0][~pts_to_remove[0]][None]
|
255 |
+
pred['descriptors'] = pred['descriptors'][0].T[~pts_to_remove[0]].T[None]
|
256 |
+
|
257 |
+
# Connect the lines together to form a wireframe
|
258 |
+
orig_lines = lines.clone()
|
259 |
+
if self.conf.wireframe_params.merge_line_endpoints and len(lines[0]) > 0:
|
260 |
+
# Merge first close-by endpoints to connect lines
|
261 |
+
(line_points, line_pts_scores, line_descs, line_association,
|
262 |
+
lines, lines_junc_idx, num_true_junctions) = lines_to_wireframe(
|
263 |
+
lines, line_scores, pred['all_descriptors'],
|
264 |
+
conf=self.conf.wireframe_params)
|
265 |
+
|
266 |
+
# Add the keypoints to the junctions and fill the rest with random keypoints
|
267 |
+
(all_points, all_scores, all_descs,
|
268 |
+
pl_associativity) = [], [], [], []
|
269 |
+
for bs in range(b_size):
|
270 |
+
all_points.append(torch.cat(
|
271 |
+
[line_points[bs], pred['keypoints'][bs]], dim=0))
|
272 |
+
all_scores.append(torch.cat(
|
273 |
+
[line_pts_scores[bs], pred['keypoint_scores'][bs]], dim=0))
|
274 |
+
all_descs.append(torch.cat(
|
275 |
+
[line_descs[bs], pred['descriptors'][bs]], dim=1))
|
276 |
+
|
277 |
+
associativity = torch.eye(len(all_points[-1]), dtype=torch.bool, device=device)
|
278 |
+
associativity[:num_true_junctions[bs], :num_true_junctions[bs]] = \
|
279 |
+
line_association[bs][:num_true_junctions[bs], :num_true_junctions[bs]]
|
280 |
+
pl_associativity.append(associativity)
|
281 |
+
|
282 |
+
all_points = torch.stack(all_points, dim=0)
|
283 |
+
all_scores = torch.stack(all_scores, dim=0)
|
284 |
+
all_descs = torch.stack(all_descs, dim=0)
|
285 |
+
pl_associativity = torch.stack(pl_associativity, dim=0)
|
286 |
+
else:
|
287 |
+
# Lines are independent
|
288 |
+
all_points = torch.cat([lines.reshape(b_size, -1, 2),
|
289 |
+
pred['keypoints']], dim=1)
|
290 |
+
n_pts = all_points.shape[1]
|
291 |
+
num_lines = lines.shape[1]
|
292 |
+
num_true_junctions = [num_lines * 2] * b_size
|
293 |
+
all_scores = torch.cat([
|
294 |
+
torch.repeat_interleave(line_scores, 2, dim=1),
|
295 |
+
pred['keypoint_scores']], dim=1)
|
296 |
+
pred['line_descriptors'] = self.endpoints_pooling(
|
297 |
+
lines, pred['all_descriptors'], (h, w))
|
298 |
+
all_descs = torch.cat([
|
299 |
+
pred['line_descriptors'].reshape(b_size, self.conf.sp_params.descriptor_dim, -1),
|
300 |
+
pred['descriptors']], dim=2)
|
301 |
+
pl_associativity = torch.eye(
|
302 |
+
n_pts, dtype=torch.bool,
|
303 |
+
device=device)[None].repeat(b_size, 1, 1)
|
304 |
+
lines_junc_idx = torch.arange(
|
305 |
+
num_lines * 2, device=device).reshape(1, -1, 2).repeat(b_size, 1, 1)
|
306 |
+
|
307 |
+
del pred['all_descriptors'] # Remove dense descriptors to save memory
|
308 |
+
torch.cuda.empty_cache()
|
309 |
+
|
310 |
+
return {'keypoints': all_points,
|
311 |
+
'keypoint_scores': all_scores,
|
312 |
+
'descriptors': all_descs,
|
313 |
+
'pl_associativity': pl_associativity,
|
314 |
+
'num_junctions': torch.tensor(num_true_junctions),
|
315 |
+
'lines': lines,
|
316 |
+
'orig_lines': orig_lines,
|
317 |
+
'lines_junc_idx': lines_junc_idx,
|
318 |
+
'line_scores': line_scores,
|
319 |
+
# 'valid_lines': valid_lines,
|
320 |
+
}
|
321 |
+
|
322 |
+
@staticmethod
|
323 |
+
def endpoints_pooling(segs, all_descriptors, img_shape):
|
324 |
+
assert segs.ndim == 4 and segs.shape[-2:] == (2, 2)
|
325 |
+
filter_shape = all_descriptors.shape[-2:]
|
326 |
+
scale_x = filter_shape[1] / img_shape[1]
|
327 |
+
scale_y = filter_shape[0] / img_shape[0]
|
328 |
+
|
329 |
+
scaled_segs = torch.round(segs * torch.tensor([scale_x, scale_y]).to(segs)).long()
|
330 |
+
scaled_segs[..., 0] = torch.clip(scaled_segs[..., 0], 0, filter_shape[1] - 1)
|
331 |
+
scaled_segs[..., 1] = torch.clip(scaled_segs[..., 1], 0, filter_shape[0] - 1)
|
332 |
+
line_descriptors = [all_descriptors[None, b, ..., torch.squeeze(b_segs[..., 1]), torch.squeeze(b_segs[..., 0])]
|
333 |
+
for b, b_segs in enumerate(scaled_segs)]
|
334 |
+
line_descriptors = torch.cat(line_descriptors)
|
335 |
+
return line_descriptors # Shape (1, 256, 308, 2)
|
336 |
+
|
337 |
+
def loss(self, pred, data):
|
338 |
+
raise NotImplementedError
|
339 |
+
|
340 |
+
def metrics(self, pred, data):
|
341 |
+
return {}
|
predictor/predict.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import random
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
import os.path as osp
|
6 |
+
import glob
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
from scalelsd.base import setup_logger, MetricLogger, show, WireframeGraph
|
10 |
+
|
11 |
+
from scalelsd.ssl.datasets import dataset_util
|
12 |
+
from scalelsd.ssl.models.detector import ScaleLSD
|
13 |
+
from scalelsd.ssl.misc.train_utils import load_scalelsd_model
|
14 |
+
|
15 |
+
from torch.utils.data import DataLoader
|
16 |
+
import torch.utils.data.dataloader as torch_loader
|
17 |
+
|
18 |
+
from pathlib import Path
|
19 |
+
import argparse, yaml, logging, time, datetime, cv2, copy, sys, json
|
20 |
+
from easydict import EasyDict
|
21 |
+
import accelerate
|
22 |
+
from accelerate import load_checkpoint_and_dispatch
|
23 |
+
import matplotlib
|
24 |
+
import matplotlib.pyplot as plt
|
25 |
+
|
26 |
+
def parse_args():
|
27 |
+
aparser = argparse.ArgumentParser()
|
28 |
+
aparser.add_argument('-c', '--ckpt', default='models/scalelsd-vitbase-v1-train-sa1b.pt', type=str, help='the path for loading checkpoints')
|
29 |
+
aparser.add_argument('-t','--threshold', default=10,type=float)
|
30 |
+
aparser.add_argument('-i', '--img', required=True, type=str)
|
31 |
+
aparser.add_argument('--width', default=512, type=int)
|
32 |
+
aparser.add_argument('--height', default=512,type=int)
|
33 |
+
aparser.add_argument('--whitebg', default=0.0, type=float)
|
34 |
+
aparser.add_argument('--saveto', default=None, type=str,)
|
35 |
+
aparser.add_argument('-e','--ext', default='pdf', type=str, choices=['pdf','png','json','txt'])
|
36 |
+
aparser.add_argument('--device', default='cuda', type=str, choices=['cuda','cpu','mps'])
|
37 |
+
aparser.add_argument('--disable-show', default=False, action='store_true')
|
38 |
+
aparser.add_argument('--draw-junctions-only', default=False, action='store_true')
|
39 |
+
aparser.add_argument('--use_lsd', default=False, action='store_true')
|
40 |
+
aparser.add_argument('--use_nms', default=False, action='store_true')
|
41 |
+
|
42 |
+
ScaleLSD.cli(aparser)
|
43 |
+
|
44 |
+
args = aparser.parse_args()
|
45 |
+
|
46 |
+
ScaleLSD.configure(args)
|
47 |
+
|
48 |
+
return args
|
49 |
+
|
50 |
+
|
51 |
+
def main():
|
52 |
+
args = parse_args()
|
53 |
+
|
54 |
+
model = load_scalelsd_model(args.ckpt, device=args.device)
|
55 |
+
|
56 |
+
# Set up output directory and painter
|
57 |
+
if args.saveto is None:
|
58 |
+
print('No output directory specified, saving outputs to folder: temp_output/ScaleLSD')
|
59 |
+
args.saveto = 'temp_output/ScaleLSD'
|
60 |
+
os.makedirs(args.saveto,exist_ok=True)
|
61 |
+
|
62 |
+
show.painters.HAWPainter.confidence_threshold = args.threshold
|
63 |
+
# show.painters.HAWPainter.line_width = 2
|
64 |
+
# show.painters.HAWPainter.marker_size = 4
|
65 |
+
show.Canvas.show = not args.disable_show
|
66 |
+
if args.whitebg > 0.0:
|
67 |
+
show.Canvas.white_overlay = args.whitebg
|
68 |
+
painter = show.painters.HAWPainter()
|
69 |
+
edge_color = 'orange' # 'midnightblue'
|
70 |
+
vertex_color = 'Cyan' # 'deeppink'
|
71 |
+
|
72 |
+
# Prepare images
|
73 |
+
all_images = []
|
74 |
+
if os.path.isfile(args.img) and args.img.endswith(('.jpg', '.png')):
|
75 |
+
all_images.append(args.img)
|
76 |
+
elif os.path.isdir(args.img):
|
77 |
+
for file in os.listdir(args.img):
|
78 |
+
if file.endswith(('.jpg', '.png')):
|
79 |
+
fname = os.path.join(args.img, file)
|
80 |
+
all_images.append(fname)
|
81 |
+
all_images = sorted(all_images)
|
82 |
+
else:
|
83 |
+
raise ValueError('Input must be a file or a directory containing images.')
|
84 |
+
|
85 |
+
# Inference
|
86 |
+
for fname in tqdm(all_images):
|
87 |
+
pname = Path(fname)
|
88 |
+
image = cv2.imread(fname,0)
|
89 |
+
|
90 |
+
# for resize input, default shape is [512, 512]
|
91 |
+
ori_shape = image.shape[:2]
|
92 |
+
image_cp = copy.deepcopy(image)
|
93 |
+
image_ = cv2.resize(image_cp, (args.width, args.height))
|
94 |
+
image_ = torch.from_numpy(image_).float()/255.0
|
95 |
+
image_ = image_[None,None].to(args.device)
|
96 |
+
|
97 |
+
meta = {
|
98 |
+
'width': ori_shape[1],
|
99 |
+
'height':ori_shape[0],
|
100 |
+
'filename': '',
|
101 |
+
'use_lsd': args.use_lsd,
|
102 |
+
'use_nms': args.use_nms,
|
103 |
+
}
|
104 |
+
|
105 |
+
with torch.no_grad():
|
106 |
+
outputs, _ = model(image_, meta)
|
107 |
+
outputs = outputs[0]
|
108 |
+
|
109 |
+
|
110 |
+
if args.saveto is not None:
|
111 |
+
|
112 |
+
if args.ext in ['png', 'pdf']:
|
113 |
+
fig_file = osp.join(args.saveto, pname.with_suffix('.'+args.ext).name)
|
114 |
+
with show.image_canvas(fname, fig_file=fig_file) as ax:
|
115 |
+
if args.draw_junctions_only:
|
116 |
+
painter.draw_junctions(ax,outputs)
|
117 |
+
else:
|
118 |
+
# painter.draw_wireframe(ax,outputs)
|
119 |
+
painter.draw_wireframe(ax,outputs, edge_color=edge_color, vertex_color=vertex_color)
|
120 |
+
elif args.ext == 'json':
|
121 |
+
indices = WireframeGraph.xyxy2indices(outputs['juncs_pred'],outputs['lines_pred'])
|
122 |
+
wireframe = WireframeGraph(outputs['juncs_pred'], outputs['juncs_score'], indices, outputs['lines_score'], outputs['width'], outputs['height'])
|
123 |
+
outpath = osp.join(args.saveto, pname.with_suffix('.json').name)
|
124 |
+
with open(outpath,'w') as f:
|
125 |
+
json.dump(wireframe.jsonize(),f)
|
126 |
+
else:
|
127 |
+
raise ValueError('Unsupported extension: {} is not in [png, pdf, json]'.format(args.ext))
|
128 |
+
|
129 |
+
|
130 |
+
if __name__ == "__main__":
|
131 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
opencv-python
|
3 |
+
cython
|
4 |
+
matplotlib
|
5 |
+
yacs
|
6 |
+
scikit-image
|
7 |
+
tqdm
|
8 |
+
python-json-logger
|
9 |
+
h5py
|
10 |
+
shapely
|
11 |
+
pycolmap
|
12 |
+
seaborn
|
13 |
+
kornia
|
14 |
+
easydict
|
15 |
+
pynvml
|
16 |
+
timm
|
17 |
+
einops==0.7.0
|
18 |
+
numpy==1.26.4
|
19 |
+
gradio
|
20 |
+
pydantic==2.10.6
|
21 |
+
pytlsd@git+https://github.com/iago-suarez/pytlsd.git@4180ab8
|
scalelsd/.gitignore
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
*/__pycache__/
|
3 |
+
**/__pycache__/
|
4 |
+
|
5 |
+
data-ssl
|
6 |
+
exp
|
7 |
+
exp-ssl
|
8 |
+
temp_output
|
9 |
+
third_party
|
10 |
+
./models
|
scalelsd/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from . import base
|
2 |
+
from . import ssl
|
scalelsd/base/__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .csrc import _C
|
2 |
+
from . import utils
|
3 |
+
from .utils.logger import setup_logger
|
4 |
+
from .utils.metric_logger import MetricLogger
|
5 |
+
from .wireframe import WireframeGraph
|
6 |
+
|
7 |
+
__all__ = [
|
8 |
+
"_C",
|
9 |
+
"utils",
|
10 |
+
"setup_logger",
|
11 |
+
"MetricLogger",
|
12 |
+
"WireframeGraph",
|
13 |
+
]
|
scalelsd/base/csrc/__init__.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.utils.cpp_extension import load
|
2 |
+
import glob
|
3 |
+
import os.path as osp
|
4 |
+
|
5 |
+
__this__ = osp.dirname(__file__)
|
6 |
+
|
7 |
+
try:
|
8 |
+
_C = load(name='_C',sources=[
|
9 |
+
osp.join(__this__,'binding.cpp'),
|
10 |
+
osp.join(__this__,'linesegment.cu'),
|
11 |
+
]
|
12 |
+
)
|
13 |
+
except:
|
14 |
+
_C = None
|
15 |
+
|
16 |
+
_C = load(name='_C', sources=[osp.join(__this__,'binding.cpp'), osp.join(__this__,'linesegment.cu')])
|
17 |
+
__all__ = ["_C"]
|
18 |
+
|
19 |
+
#_C = load(name='base._C', sources=['lltm_cuda.cpp', 'lltm_cuda_kernel.cu'])
|
scalelsd/base/csrc/binding.cpp
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include "linesegment.h"
|
2 |
+
|
3 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
4 |
+
m.def("encodels", &encodels, "Encoding line segments to maps");
|
5 |
+
}
|
scalelsd/base/csrc/linesegment.cu
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <ATen/ATen.h>
|
2 |
+
#include <ATen/cuda/CUDAContext.h>
|
3 |
+
|
4 |
+
// #include <THC/THC.h>
|
5 |
+
// #include <THC/THCDeviceUtils.cuh>
|
6 |
+
#include <torch/torch.h>
|
7 |
+
#include <torch/extension.h>
|
8 |
+
|
9 |
+
#include <vector>
|
10 |
+
#include <iostream>
|
11 |
+
|
12 |
+
int const CUDA_NUM_THREADS = 1024;
|
13 |
+
|
14 |
+
inline int CUDA_GET_BLOCKS(const int N) {
|
15 |
+
return (N + CUDA_NUM_THREADS - 1) / CUDA_NUM_THREADS;
|
16 |
+
}
|
17 |
+
|
18 |
+
#define CUDA_1D_KERNEL_LOOP(i, n) \
|
19 |
+
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
|
20 |
+
i += blockDim.x * gridDim.x)
|
21 |
+
|
22 |
+
|
23 |
+
__global__ void encode_kernel(const int nthreads, const float* lines,
|
24 |
+
const int input_height, const int input_width, const int num,
|
25 |
+
const int height, const int width, float* map,
|
26 |
+
bool* label, float* tmap)
|
27 |
+
{
|
28 |
+
CUDA_1D_KERNEL_LOOP(index, nthreads){
|
29 |
+
int w = index % width;
|
30 |
+
int h = (index / width) % height;
|
31 |
+
int x_index = h*width + w;
|
32 |
+
int y_index = height*width + h*width + w;
|
33 |
+
int ux_index = 2*height*width + h*width + w;
|
34 |
+
int uy_index = 3*height*width + h*width + w;
|
35 |
+
int vx_index = 4*height*width + h*width + w;
|
36 |
+
int vy_index = 5*height*width + h*width + w;
|
37 |
+
int label_index = h*width + w;
|
38 |
+
|
39 |
+
float px = (float) w;
|
40 |
+
float py = (float) h;
|
41 |
+
float min_dis = 1e30;
|
42 |
+
int minp = -1;
|
43 |
+
bool flagp = true;
|
44 |
+
for(int i = 0; i < num; ++i) {
|
45 |
+
float xs = (float)width /(float)input_width;
|
46 |
+
float ys = (float)height /(float)input_height;
|
47 |
+
float x1 = lines[4*i ]*xs;
|
48 |
+
float y1 = lines[4*i+1]*ys;
|
49 |
+
float x2 = lines[4*i+2]*xs;
|
50 |
+
float y2 = lines[4*i+3]*ys;
|
51 |
+
|
52 |
+
float dx = x2 - x1;
|
53 |
+
float dy = y2 - y1;
|
54 |
+
float ux = x1 - px;
|
55 |
+
float uy = y1 - py;
|
56 |
+
float vx = x2 - px;
|
57 |
+
float vy = y2 - py;
|
58 |
+
float norm2 = dx*dx + dy*dy;
|
59 |
+
bool flag = false;
|
60 |
+
float t = ((px-x1)*dx + (py-y1)*dy)/(norm2+1e-6);
|
61 |
+
if (t<=1 && t>=0.0)
|
62 |
+
flag = true;
|
63 |
+
|
64 |
+
t = t<0.0? 0.0:t;
|
65 |
+
t = t>1.0? 1.0:t;
|
66 |
+
|
67 |
+
float ax = x1 + t*(x2-x1) - px;
|
68 |
+
float ay = y1 + t*(y2-y1) - py;
|
69 |
+
|
70 |
+
float dis = ax*ax + ay*ay;
|
71 |
+
if (dis < min_dis) {
|
72 |
+
min_dis = dis;
|
73 |
+
map[x_index] = ax;
|
74 |
+
map[y_index] = ay;
|
75 |
+
float norm_u2 = ux*ux+uy*uy;
|
76 |
+
float norm_v2 = vx*vx+vy*vy;
|
77 |
+
|
78 |
+
if (norm_u2 < norm_v2){
|
79 |
+
map[ux_index] = ux;
|
80 |
+
map[uy_index] = uy;
|
81 |
+
map[vx_index] = vx;
|
82 |
+
map[vy_index] = vy;
|
83 |
+
}
|
84 |
+
else{
|
85 |
+
map[ux_index] = vx;
|
86 |
+
map[uy_index] = vy;
|
87 |
+
map[vx_index] = ux;
|
88 |
+
map[vy_index] = uy;
|
89 |
+
}
|
90 |
+
|
91 |
+
minp = i;
|
92 |
+
if (flag)
|
93 |
+
flagp = true;
|
94 |
+
else
|
95 |
+
flagp = false;
|
96 |
+
|
97 |
+
tmap[index] = t;
|
98 |
+
}
|
99 |
+
}
|
100 |
+
// label[label_index+minp*height*width] = flagp;
|
101 |
+
|
102 |
+
}
|
103 |
+
}
|
104 |
+
|
105 |
+
|
106 |
+
std::tuple<at::Tensor, at::Tensor, at::Tensor> lsencode_cuda(
|
107 |
+
const at::Tensor& lines,
|
108 |
+
const int input_height,
|
109 |
+
const int input_width,
|
110 |
+
const int height,
|
111 |
+
const int width,
|
112 |
+
const int num_lines)
|
113 |
+
|
114 |
+
{
|
115 |
+
auto map = at::zeros({6,height,width}, lines.options());
|
116 |
+
auto tmap = at::zeros({1,height,width}, lines.options());
|
117 |
+
auto label = at::zeros({1,height,width}, lines.options().dtype(at::kBool));
|
118 |
+
auto nthreads = height*width;
|
119 |
+
|
120 |
+
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
121 |
+
|
122 |
+
float* map_data = map.data<float>();
|
123 |
+
float* tmap_data = tmap.data<float>();
|
124 |
+
bool* label_data = label.data<bool>();
|
125 |
+
|
126 |
+
encode_kernel<<<CUDA_GET_BLOCKS(nthreads), CUDA_NUM_THREADS >>>(
|
127 |
+
nthreads,
|
128 |
+
lines.contiguous().data<float>(),
|
129 |
+
input_height, input_width,
|
130 |
+
num_lines,
|
131 |
+
height, width,
|
132 |
+
map_data,
|
133 |
+
label_data,
|
134 |
+
tmap_data);
|
135 |
+
|
136 |
+
// THCudaCheck(cudaGetLastError());
|
137 |
+
|
138 |
+
return std::make_tuple(map, label, tmap);
|
139 |
+
}
|
scalelsd/base/csrc/linesegment.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// #pragma once
|
2 |
+
#include <torch/extension.h>
|
3 |
+
|
4 |
+
std::tuple<at::Tensor, at::Tensor, at::Tensor> lsencode_cuda(
|
5 |
+
const at::Tensor& lines,
|
6 |
+
const int input_height,
|
7 |
+
const int input_width,
|
8 |
+
const int height,
|
9 |
+
const int width,
|
10 |
+
const int num_lines);
|
11 |
+
|
12 |
+
std::tuple<at::Tensor,at::Tensor,at::Tensor> encodels(
|
13 |
+
const at::Tensor& lines,
|
14 |
+
const int input_height,
|
15 |
+
const int input_width,
|
16 |
+
const int height,
|
17 |
+
const int width,
|
18 |
+
const int num_lines)
|
19 |
+
{
|
20 |
+
return lsencode_cuda(lines,
|
21 |
+
input_height,
|
22 |
+
input_width,
|
23 |
+
height,
|
24 |
+
width,
|
25 |
+
num_lines);
|
26 |
+
}
|
scalelsd/base/show/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from .canvas import Canvas, image_canvas, canvas
|
2 |
+
from .painters import HAWPainter
|
3 |
+
from .cli import cli, configure
|
scalelsd/base/show/canvas.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from contextlib import contextmanager
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
|
5 |
+
from matplotlib.pyplot import figimage, margins
|
6 |
+
import numpy as np
|
7 |
+
import cv2
|
8 |
+
|
9 |
+
try:
|
10 |
+
import matplotlib.pyplot as plt # pylint: disable=import-error
|
11 |
+
|
12 |
+
except ModuleNotFoundError as err:
|
13 |
+
if err.name != 'matplotlib':
|
14 |
+
raise err
|
15 |
+
plt = None
|
16 |
+
|
17 |
+
|
18 |
+
LOG = logging.getLogger(__name__)
|
19 |
+
|
20 |
+
class Canvas:
|
21 |
+
"""Canvas for plotting.
|
22 |
+
All methods expose Axes objects. To get Figure objects, you can ask the axis
|
23 |
+
`ax.get_figure()`.
|
24 |
+
"""
|
25 |
+
|
26 |
+
all_images_directory = None
|
27 |
+
all_images_count = 0
|
28 |
+
show = False
|
29 |
+
image_width = 7.0
|
30 |
+
image_height = None
|
31 |
+
blank_dpi = 200
|
32 |
+
image_dpi_factor = 1.0
|
33 |
+
image_min_dpi = 50.0
|
34 |
+
out_file_extension = 'pdf'
|
35 |
+
white_overlay = False
|
36 |
+
|
37 |
+
@classmethod
|
38 |
+
def generic_name(cls):
|
39 |
+
if cls.all_images_directory is None:
|
40 |
+
return None
|
41 |
+
os.makedirs(cls.all_images_directory, exist_ok=True)
|
42 |
+
|
43 |
+
cls.all_images_count += 1
|
44 |
+
return os.path.join(cls.all_images_directory,
|
45 |
+
'{:04}.{}'.format(cls.all_images_count, cls.out_file_extension))
|
46 |
+
|
47 |
+
@classmethod
|
48 |
+
@contextmanager
|
49 |
+
def blank(cls, fig_file=None, *, dpi=None, nomargin=False, **kwargs):
|
50 |
+
if plt is None:
|
51 |
+
raise Exception('please install matplotlib')
|
52 |
+
if fig_file is None:
|
53 |
+
fig_file = cls.generic_name()
|
54 |
+
|
55 |
+
if dpi is None:
|
56 |
+
dpi = cls.blank_dpi
|
57 |
+
|
58 |
+
if 'figsize' not in kwargs:
|
59 |
+
kwargs['figsize'] = (10, 6)
|
60 |
+
|
61 |
+
if nomargin:
|
62 |
+
if 'gridspec_kw' not in kwargs:
|
63 |
+
kwargs['gridspec_kw'] = {}
|
64 |
+
kwargs['gridspec_kw']['wspace'] = 0
|
65 |
+
kwargs['gridspec_kw']['hspace'] = 0
|
66 |
+
kwargs['gridspec_kw']['left'] = 0.0
|
67 |
+
kwargs['gridspec_kw']['right'] = 1.0
|
68 |
+
kwargs['gridspec_kw']['top'] = 1.0
|
69 |
+
kwargs['gridspec_kw']['bottom'] = 0.0
|
70 |
+
|
71 |
+
fig, ax = plt.subplots(dpi=dpi, **kwargs)
|
72 |
+
|
73 |
+
yield ax
|
74 |
+
|
75 |
+
fig.set_tight_layout(not margins)
|
76 |
+
if fig_file:
|
77 |
+
LOG.debug('writing image to %s', fig_file)
|
78 |
+
fig.savefig(fig_file)
|
79 |
+
|
80 |
+
if cls.show:
|
81 |
+
plt.show()
|
82 |
+
plt.close(fig)
|
83 |
+
|
84 |
+
|
85 |
+
@classmethod
|
86 |
+
@contextmanager
|
87 |
+
def image(cls, image, fig_file=None, *, margin=None, **kwargs):
|
88 |
+
if plt is None:
|
89 |
+
raise Exception('please install matplotlib')
|
90 |
+
if fig_file is None:
|
91 |
+
fig_file = cls.generic_name()
|
92 |
+
|
93 |
+
if isinstance(image, str):
|
94 |
+
image = cv2.imread(image)[...,::-1]
|
95 |
+
else:
|
96 |
+
image = np.asarray(image)
|
97 |
+
|
98 |
+
if margin is None:
|
99 |
+
margin = [0.0, 0.0, 0.0, 0.0]
|
100 |
+
elif isinstance(margin, float):
|
101 |
+
margin = [margin, margin, margin, margin]
|
102 |
+
assert len(margin) == 4
|
103 |
+
|
104 |
+
if 'figsize' not in kwargs:
|
105 |
+
# compute figure size: use image ratio and take the drawable area
|
106 |
+
# into account that is left after subtracting margins.
|
107 |
+
image_ratio = image.shape[0] / image.shape[1]
|
108 |
+
image_area_ratio = (1.0 - margin[1] - margin[3]) / (1.0 - margin[0] - margin[2])
|
109 |
+
if cls.image_width is not None:
|
110 |
+
kwargs['figsize'] = (
|
111 |
+
cls.image_width,
|
112 |
+
cls.image_width * image_ratio / image_area_ratio
|
113 |
+
)
|
114 |
+
elif cls.image_height:
|
115 |
+
kwargs['figsize'] = (
|
116 |
+
cls.image_height * image_area_ratio / image_ratio,
|
117 |
+
cls.image_height
|
118 |
+
)
|
119 |
+
|
120 |
+
# dpi = max(cls.image_min_dpi, image.shape[1] / kwargs['figsize'][0] * cls.image_dpi_factor)
|
121 |
+
dpi = 200
|
122 |
+
# import pdb; pdb.set_trace()
|
123 |
+
fig = plt.figure(dpi=dpi, **kwargs)
|
124 |
+
ax = plt.Axes(fig, [0.0 + margin[0],
|
125 |
+
0.0 + margin[1],
|
126 |
+
1.0 - margin[2],
|
127 |
+
1.0 - margin[3]])
|
128 |
+
|
129 |
+
ax.set_axis_off()
|
130 |
+
ax.set_xlim(-0.5, image.shape[1] - 0.5) # imshow uses center-pixel-coordinates
|
131 |
+
ax.set_ylim(image.shape[0] - 0.5, -0.5)
|
132 |
+
fig.add_axes(ax)
|
133 |
+
ax.imshow(image)
|
134 |
+
if cls.white_overlay:
|
135 |
+
white_screen(ax, cls.white_overlay)
|
136 |
+
yield ax
|
137 |
+
|
138 |
+
if fig_file:
|
139 |
+
LOG.debug('writing image to %s', fig_file)
|
140 |
+
fig.savefig(fig_file)
|
141 |
+
if cls.show:
|
142 |
+
plt.show()
|
143 |
+
import pdb;pdb.set_trace()
|
144 |
+
plt.close(fig)
|
145 |
+
|
146 |
+
def white_screen(ax, alpha=0.9):
|
147 |
+
ax.add_patch(
|
148 |
+
plt.Rectangle((0, 0), 1, 1, transform=ax.transAxes, alpha=alpha,
|
149 |
+
facecolor='white')
|
150 |
+
)
|
151 |
+
|
152 |
+
canvas = Canvas.blank
|
153 |
+
image_canvas = Canvas.image
|
scalelsd/base/show/cli.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from hawp.config import defaults
|
2 |
+
import logging
|
3 |
+
|
4 |
+
from .canvas import Canvas
|
5 |
+
from .painters import HAWPainter
|
6 |
+
import matplotlib
|
7 |
+
LOG = logging.getLogger(__name__)
|
8 |
+
|
9 |
+
def cli(parser):
|
10 |
+
group = parser.add_argument_group('show')
|
11 |
+
|
12 |
+
assert not Canvas.show
|
13 |
+
group.add_argument('--show', default=False,action='store_true',
|
14 |
+
help='show every plot, i.e., call matplotlib show()')
|
15 |
+
|
16 |
+
group.add_argument('--edge-threshold', default=None, type=float,
|
17 |
+
help='show the wireframe edges whose confidences are greater than [edge_threshold]')
|
18 |
+
group.add_argument('--out-ext', default='png', type=str,
|
19 |
+
help='save the plot in specific format')
|
20 |
+
def configure(args):
|
21 |
+
Canvas.show = args.show
|
22 |
+
Canvas.out_file_extension = args.out_ext
|
23 |
+
if args.edge_threshold is not None:
|
24 |
+
HAWPainter.confidence_threshold = args.edge_threshold
|
scalelsd/base/show/painters.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
|
6 |
+
|
7 |
+
try:
|
8 |
+
import matplotlib
|
9 |
+
import matplotlib.animation
|
10 |
+
import matplotlib.collections
|
11 |
+
import matplotlib.patches
|
12 |
+
except ImportError:
|
13 |
+
matplotlib = None
|
14 |
+
|
15 |
+
|
16 |
+
LOG = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
|
19 |
+
class HAWPainter:
|
20 |
+
# line_width = None
|
21 |
+
# marker_size = None
|
22 |
+
line_width = 2
|
23 |
+
marker_size = 4
|
24 |
+
|
25 |
+
confidence_threshold = 0.05
|
26 |
+
|
27 |
+
def __init__(self):
|
28 |
+
|
29 |
+
if self.line_width is None:
|
30 |
+
self.line_width = 1
|
31 |
+
|
32 |
+
if self.marker_size is None:
|
33 |
+
self.marker_size = max(1, int(self.line_width * 0.5))
|
34 |
+
|
35 |
+
def draw_junctions(self, ax, wireframe, *,
|
36 |
+
edge_color = None, vertex_color = None):
|
37 |
+
if wireframe is None:
|
38 |
+
return
|
39 |
+
|
40 |
+
if edge_color is None:
|
41 |
+
edge_color = 'b'
|
42 |
+
if vertex_color is None:
|
43 |
+
vertex_color = 'c'
|
44 |
+
|
45 |
+
if 'lines_score' in wireframe.keys():
|
46 |
+
line_segments = wireframe['lines_pred'][wireframe['lines_score']>self.confidence_threshold]
|
47 |
+
else:
|
48 |
+
line_segments = wireframe['lines_pred']
|
49 |
+
|
50 |
+
if isinstance(line_segments, torch.Tensor):
|
51 |
+
line_segments = line_segments.cpu().numpy()
|
52 |
+
|
53 |
+
ax.plot(line_segments[:,0],line_segments[:,1],'.',color=vertex_color)
|
54 |
+
ax.plot(line_segments[:,2],line_segments[:,3],'.',
|
55 |
+
color=vertex_color)
|
56 |
+
def draw_wireframe(self, ax, wireframe, *,
|
57 |
+
edge_color = None, vertex_color = None):
|
58 |
+
if wireframe is None:
|
59 |
+
return
|
60 |
+
|
61 |
+
if edge_color is None:
|
62 |
+
edge_color = 'b'
|
63 |
+
if vertex_color is None:
|
64 |
+
vertex_color = 'c'
|
65 |
+
|
66 |
+
if 'lines_score' in wireframe.keys():
|
67 |
+
line_segments = wireframe['lines_pred'][wireframe['lines_score']>self.confidence_threshold]
|
68 |
+
else:
|
69 |
+
line_segments = wireframe['lines_pred']
|
70 |
+
|
71 |
+
# import pdb;pdb.set_trace()
|
72 |
+
if isinstance(line_segments, torch.Tensor):
|
73 |
+
line_segments = line_segments.cpu().numpy()
|
74 |
+
|
75 |
+
# import pdb;pdb.set_trace()
|
76 |
+
# line_segments = wireframe.line_segments(threshold=self.confidence_threshold)
|
77 |
+
# line_segments = line_segments.cpu().numpy()
|
78 |
+
ax.plot([line_segments[:,0],line_segments[:,2]],[line_segments[:,1],line_segments[:,3]],'-',color=edge_color,linewidth=self.line_width)
|
79 |
+
ax.plot(line_segments[:,0],line_segments[:,1],'.',color=vertex_color,markersize=self.marker_size)
|
80 |
+
ax.plot(line_segments[:,2],line_segments[:,3],'.',color=vertex_color,markersize=self.marker_size)
|
scalelsd/base/utils/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
scalelsd/base/utils/logger.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
from pythonjsonlogger import jsonlogger
|
6 |
+
|
7 |
+
|
8 |
+
def setup_logger(name, save_dir, out_file='log.txt', json_format=False, rank=0):
|
9 |
+
logger = logging.getLogger(name)
|
10 |
+
logger.setLevel(logging.DEBUG)
|
11 |
+
|
12 |
+
if json_format:
|
13 |
+
formatter = jsonlogger.JsonFormatter("%(asctime)s %(name)s %(levelname)s: %(message)s")
|
14 |
+
else:
|
15 |
+
formatter = logging.Formatter("%(asctime)s %(name)s %(levelname)s: %(message)s")
|
16 |
+
|
17 |
+
if rank == 0:
|
18 |
+
ch = logging.StreamHandler(stream=sys.stdout)
|
19 |
+
ch.setLevel(logging.DEBUG)
|
20 |
+
ch.setFormatter(formatter)
|
21 |
+
logger.addHandler(ch)
|
22 |
+
|
23 |
+
if save_dir:
|
24 |
+
os.makedirs(save_dir, exist_ok=True)
|
25 |
+
fh = logging.FileHandler(os.path.join(save_dir, out_file))
|
26 |
+
fh.setLevel(logging.DEBUG)
|
27 |
+
fh.setFormatter(formatter)
|
28 |
+
logger.addHandler(fh)
|
29 |
+
|
30 |
+
return logger
|
scalelsd/base/utils/metric_logger.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
2 |
+
from collections import defaultdict
|
3 |
+
from collections import deque
|
4 |
+
|
5 |
+
import torch
|
6 |
+
|
7 |
+
|
8 |
+
class SmoothedValue(object):
|
9 |
+
"""Track a series of values and provide access to smoothed values over a
|
10 |
+
window or the global series average.
|
11 |
+
"""
|
12 |
+
|
13 |
+
def __init__(self, window_size=20):
|
14 |
+
self.deque = deque(maxlen=window_size)
|
15 |
+
self.series = []
|
16 |
+
self.total = 0.0
|
17 |
+
self.count = 0
|
18 |
+
|
19 |
+
def update(self, value):
|
20 |
+
self.deque.append(value)
|
21 |
+
self.series.append(value)
|
22 |
+
self.count += 1
|
23 |
+
self.total += value
|
24 |
+
|
25 |
+
@property
|
26 |
+
def median(self):
|
27 |
+
d = torch.tensor(list(self.deque))
|
28 |
+
return d.median().item()
|
29 |
+
|
30 |
+
@property
|
31 |
+
def avg(self):
|
32 |
+
d = torch.tensor(list(self.deque))
|
33 |
+
return d.mean().item()
|
34 |
+
|
35 |
+
@property
|
36 |
+
def global_avg(self):
|
37 |
+
return self.total / self.count
|
38 |
+
|
39 |
+
|
40 |
+
class MetricLogger(object):
|
41 |
+
def __init__(self, delimiter="\t"):
|
42 |
+
self.meters = defaultdict(SmoothedValue)
|
43 |
+
self.delimiter = delimiter
|
44 |
+
|
45 |
+
def update(self, **kwargs):
|
46 |
+
for k, v in kwargs.items():
|
47 |
+
if isinstance(v, torch.Tensor):
|
48 |
+
v = v.item()
|
49 |
+
assert isinstance(v, (float, int))
|
50 |
+
self.meters[k].update(v)
|
51 |
+
|
52 |
+
def __getattr__(self, attr):
|
53 |
+
if attr in self.meters:
|
54 |
+
return self.meters[attr]
|
55 |
+
if attr in self.__dict__:
|
56 |
+
return self.__dict__[attr]
|
57 |
+
raise AttributeError("'{}' object has no attribute '{}'".format(
|
58 |
+
type(self).__name__, attr))
|
59 |
+
|
60 |
+
def __str__(self):
|
61 |
+
loss_str = []
|
62 |
+
keys = sorted(self.meters)
|
63 |
+
# for name, meter in self.meters.items():
|
64 |
+
for name in keys:
|
65 |
+
meter = self.meters[name]
|
66 |
+
loss_str.append(
|
67 |
+
"{}: {:.4f} ({:.4f})".format(name, meter.median, meter.global_avg)
|
68 |
+
)
|
69 |
+
return self.delimiter.join(loss_str)
|
70 |
+
|
71 |
+
def tensorborad(self, iteration, writter, phase='train'):
|
72 |
+
for name, meter in self.meters.items():
|
73 |
+
if 'loss' in name:
|
74 |
+
# writter.add_scalar('average/{}'.format(name), meter.avg, iteration)
|
75 |
+
writter.add_scalar('{}/global/{}'.format(phase,name), meter.global_avg, iteration)
|
76 |
+
# writter.add_scalar('median/{}'.format(name), meter.median, iteration)
|
77 |
+
|
scalelsd/base/wireframe.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import json
|
6 |
+
|
7 |
+
class WireframeGraph:
|
8 |
+
def __init__(self,
|
9 |
+
vertices: torch.Tensor,
|
10 |
+
v_confidences: torch.Tensor,
|
11 |
+
edges: torch.Tensor,
|
12 |
+
edge_weights: torch.Tensor,
|
13 |
+
frame_width: int,
|
14 |
+
frame_height: int):
|
15 |
+
self.vertices = vertices
|
16 |
+
self.v_confidences = v_confidences
|
17 |
+
self.edges = edges
|
18 |
+
self.weights = edge_weights
|
19 |
+
self.frame_width = frame_width
|
20 |
+
self.frame_height = frame_height
|
21 |
+
|
22 |
+
@classmethod
|
23 |
+
def xyxy2indices(cls,junctions, lines):
|
24 |
+
# junctions: (N,2)
|
25 |
+
# lines: (M,4)
|
26 |
+
# return: (M,2)
|
27 |
+
dist1 = torch.norm(junctions[None,:,:]-lines[:,None,:2],dim=-1)
|
28 |
+
dist2 = torch.norm(junctions[None,:,:]-lines[:,None,2:],dim=-1)
|
29 |
+
idx1 = torch.argmin(dist1,dim=-1)
|
30 |
+
idx2 = torch.argmin(dist2,dim=-1)
|
31 |
+
return torch.stack((idx1,idx2),dim=-1)
|
32 |
+
@classmethod
|
33 |
+
def load_json(cls, fname):
|
34 |
+
with open(fname,'r') as f:
|
35 |
+
data = json.load(f)
|
36 |
+
|
37 |
+
|
38 |
+
vertices = torch.tensor(data['vertices'])
|
39 |
+
v_confidences = torch.tensor(data['vertices-score'])
|
40 |
+
edges = torch.tensor(data['edges'])
|
41 |
+
edge_weights = torch.tensor(data['edges-weights'])
|
42 |
+
height = data['height']
|
43 |
+
width = data['width']
|
44 |
+
|
45 |
+
return WireframeGraph(vertices,v_confidences,edges,edge_weights,width,height)
|
46 |
+
|
47 |
+
@property
|
48 |
+
def is_empty(self):
|
49 |
+
for key, val in self.__dict__.items():
|
50 |
+
if val is None:
|
51 |
+
return True
|
52 |
+
return False
|
53 |
+
|
54 |
+
@property
|
55 |
+
def num_vertices(self):
|
56 |
+
if self.is_empty:
|
57 |
+
return 0
|
58 |
+
return self.vertices.shape[0]
|
59 |
+
|
60 |
+
@property
|
61 |
+
def num_edges(self):
|
62 |
+
if self.is_empty:
|
63 |
+
return 0
|
64 |
+
return self.edges.shape[0]
|
65 |
+
|
66 |
+
|
67 |
+
def line_segments(self, threshold = 0.05, device=None, to_np=False):
|
68 |
+
is_valid = self.weights>threshold
|
69 |
+
p1 = self.vertices[self.edges[is_valid,0]]
|
70 |
+
p2 = self.vertices[self.edges[is_valid,1]]
|
71 |
+
ps = self.weights[is_valid]
|
72 |
+
|
73 |
+
lines = torch.cat((p1,p2,ps[:,None]),dim=-1)
|
74 |
+
if device is not None:
|
75 |
+
lines = lines.to(device)
|
76 |
+
if to_np:
|
77 |
+
lines = lines.cpu().numpy()
|
78 |
+
|
79 |
+
return lines
|
80 |
+
# if device != self.device:
|
81 |
+
|
82 |
+
def rescale(self, image_width, image_height):
|
83 |
+
scale_x = float(image_width)/float(self.frame_width)
|
84 |
+
scale_y = float(image_height)/float(self.frame_height)
|
85 |
+
|
86 |
+
self.vertices[:,0] *= scale_x
|
87 |
+
self.vertices[:,1] *= scale_y
|
88 |
+
self.frame_width = image_width
|
89 |
+
self.frame_height = image_height
|
90 |
+
|
91 |
+
def jsonize(self):
|
92 |
+
return {
|
93 |
+
'vertices': self.vertices.cpu().tolist(),
|
94 |
+
'vertices-score': self.v_confidences.cpu().tolist(),
|
95 |
+
'edges': self.edges.cpu().tolist(),
|
96 |
+
'edges-weights': self.weights.cpu().tolist(),
|
97 |
+
'height': self.frame_height,
|
98 |
+
'width': self.frame_width,
|
99 |
+
}
|
100 |
+
def __repr__(self) -> str:
|
101 |
+
return "WireframeGraph\n"+\
|
102 |
+
"Vertices: {}\n".format(self.num_vertices)+\
|
103 |
+
"Edges: {}\n".format(self.num_edges,) + \
|
104 |
+
"Frame size (HxW): {}x{}".format(self.frame_height,self.frame_width)
|
105 |
+
|
106 |
+
#graph = WireframeGraph()
|
107 |
+
if __name__ == "__main__":
|
108 |
+
graph = WireframeGraph.load_json('NeuS/public_data/bmvs_clock/hawp/000.json')
|
109 |
+
print(graph)
|
110 |
+
|
scalelsd/encoder/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .hafm import HAFMencoder
|
scalelsd/encoder/hafm.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from torch.utils.data.dataloader import default_collate
|
4 |
+
|
5 |
+
from halt import _C
|
6 |
+
|
7 |
+
class HAFMencoder(object):
|
8 |
+
def __init__(self, cfg):
|
9 |
+
self.dis_th = cfg.ENCODER.DIS_TH
|
10 |
+
self.ang_th = cfg.ENCODER.ANG_TH
|
11 |
+
self.num_static_pos_lines = cfg.ENCODER.NUM_STATIC_POS_LINES
|
12 |
+
self.num_static_neg_lines = cfg.ENCODER.NUM_STATIC_NEG_LINES
|
13 |
+
def __call__(self,annotations):
|
14 |
+
targets = []
|
15 |
+
metas = []
|
16 |
+
for ann in annotations:
|
17 |
+
t,m = self._process_per_image(ann)
|
18 |
+
targets.append(t)
|
19 |
+
metas.append(m)
|
20 |
+
|
21 |
+
return default_collate(targets),metas
|
22 |
+
|
23 |
+
def adjacent_matrix(self, n, edges, device):
|
24 |
+
mat = torch.zeros(n+1,n+1,dtype=torch.bool,device=device)
|
25 |
+
if edges.size(0)>0:
|
26 |
+
mat[edges[:,0], edges[:,1]] = 1
|
27 |
+
mat[edges[:,1], edges[:,0]] = 1
|
28 |
+
return mat
|
29 |
+
|
30 |
+
def _process_per_image(self,ann):
|
31 |
+
junctions = ann['junctions']
|
32 |
+
device = junctions.device
|
33 |
+
height, width = ann['height'], ann['width']
|
34 |
+
jmap = torch.zeros((height,width),device=device)
|
35 |
+
joff = torch.zeros((2,height,width),device=device,dtype=torch.float32)
|
36 |
+
# junctions[:,0] = junctions[:,0].clamp(min=0,max=width-1)
|
37 |
+
# junctions[:,1] = junctions[:,1].clamp(min=0,max=height-1)
|
38 |
+
xint,yint = junctions[:,0].long(), junctions[:,1].long()
|
39 |
+
off_x = junctions[:,0] - xint.float()-0.5
|
40 |
+
off_y = junctions[:,1] - yint.float()-0.5
|
41 |
+
|
42 |
+
jmap[yint,xint] = 1
|
43 |
+
joff[0,yint,xint] = off_x
|
44 |
+
joff[1,yint,xint] = off_y
|
45 |
+
|
46 |
+
edges_positive = ann['edges_positive']
|
47 |
+
edges_negative = ann['edges_negative']
|
48 |
+
|
49 |
+
pos_mat = self.adjacent_matrix(junctions.size(0),edges_positive,device)
|
50 |
+
neg_mat = self.adjacent_matrix(junctions.size(0),edges_negative,device)
|
51 |
+
lines = torch.cat((junctions[edges_positive[:,0]], junctions[edges_positive[:,1]]),dim=-1)
|
52 |
+
lines_neg = torch.cat((junctions[edges_negative[:2000,0]],junctions[edges_negative[:2000,1]]),dim=-1)
|
53 |
+
lmap, _, _ = _C.encodels(lines,height,width,height,width,lines.size(0))
|
54 |
+
|
55 |
+
center_points = (lines[:,:2] + lines[:,2:])/2.0
|
56 |
+
cmap = torch.zeros((height,width),device=device)
|
57 |
+
cxint, cyint = center_points[:,0].long(), center_points[:,1].long()
|
58 |
+
cmap[cyint,cxint] = 1
|
59 |
+
|
60 |
+
# yy,xx = torch.meshgrid(torch.arange(width,device=device),torch.arange(width,device=device))
|
61 |
+
# gaussian = torch.exp(-((yy[:,:,None]-center_points[None,None,:,1])**2 + (xx[:,:,None]-center_points[None,None,:,0])**2)/(2*(2*2)))
|
62 |
+
# cmap = gaussian.max(dim=-1)[0]
|
63 |
+
|
64 |
+
lpos = np.random.permutation(lines.cpu().numpy())[:self.num_static_pos_lines]
|
65 |
+
lneg = np.random.permutation(lines_neg.cpu().numpy())[:self.num_static_neg_lines]
|
66 |
+
# lpos = lines[torch.randperm(lines.size(0),device=device)][:self.num_static_pos_lines]
|
67 |
+
# lneg = lines_neg[torch.randperm(lines_neg.size(0),device=device)][:self.num_static_neg_lines]
|
68 |
+
lpos = torch.from_numpy(lpos).to(device)
|
69 |
+
lneg = torch.from_numpy(lneg).to(device)
|
70 |
+
|
71 |
+
lpre = torch.cat((lpos,lneg),dim=0)
|
72 |
+
_swap = (torch.rand(lpre.size(0))>0.5).to(device)
|
73 |
+
lpre[_swap] = lpre[_swap][:,[2,3,0,1]]
|
74 |
+
lpre_label = torch.cat(
|
75 |
+
[
|
76 |
+
torch.ones(lpos.size(0),device=device),
|
77 |
+
torch.zeros(lneg.size(0),device=device)
|
78 |
+
])
|
79 |
+
|
80 |
+
meta = {
|
81 |
+
'junc': junctions,
|
82 |
+
'Lpos': pos_mat,
|
83 |
+
'Lneg': neg_mat,
|
84 |
+
'lpre': lpre,
|
85 |
+
'lpre_label': lpre_label,
|
86 |
+
'lines': lines,
|
87 |
+
}
|
88 |
+
|
89 |
+
|
90 |
+
dismap = torch.sqrt(lmap[0]**2+lmap[1]**2)[None]
|
91 |
+
def _normalize(inp):
|
92 |
+
mag = torch.sqrt(inp[0]*inp[0]+inp[1]*inp[1])
|
93 |
+
return inp/(mag+1e-6)
|
94 |
+
md_map = _normalize(lmap[:2])
|
95 |
+
st_map = _normalize(lmap[2:4])
|
96 |
+
ed_map = _normalize(lmap[4:])
|
97 |
+
st_map = lmap[2:4]
|
98 |
+
ed_map = lmap[4:]
|
99 |
+
|
100 |
+
md_ = md_map.reshape(2,-1).t()
|
101 |
+
st_ = st_map.reshape(2,-1).t()
|
102 |
+
ed_ = ed_map.reshape(2,-1).t()
|
103 |
+
Rt = torch.cat(
|
104 |
+
(torch.cat((md_[:,None,None,0],md_[:,None,None,1]),dim=2),
|
105 |
+
torch.cat((-md_[:,None,None,1], md_[:,None,None,0]),dim=2)),dim=1)
|
106 |
+
R = torch.cat(
|
107 |
+
(torch.cat((md_[:,None,None,0], -md_[:,None,None,1]),dim=2),
|
108 |
+
torch.cat((md_[:,None,None,1], md_[:,None,None,0]),dim=2)),dim=1)
|
109 |
+
|
110 |
+
Rtst_ = torch.matmul(Rt, st_[:,:,None]).squeeze(-1).t()
|
111 |
+
Rted_ = torch.matmul(Rt, ed_[:,:,None]).squeeze(-1).t()
|
112 |
+
swap_mask = (Rtst_[1]<0)*(Rted_[1]>0)
|
113 |
+
pos_ = Rtst_.clone()
|
114 |
+
neg_ = Rted_.clone()
|
115 |
+
temp = pos_[:,swap_mask]
|
116 |
+
pos_[:,swap_mask] = neg_[:,swap_mask]
|
117 |
+
neg_[:,swap_mask] = temp
|
118 |
+
|
119 |
+
pos_[0] = pos_[0].clamp(min=1e-9)
|
120 |
+
pos_[1] = pos_[1].clamp(min=1e-9)
|
121 |
+
neg_[0] = neg_[0].clamp(min=1e-9)
|
122 |
+
neg_[1] = neg_[1].clamp(max=-1e-9)
|
123 |
+
|
124 |
+
mask = (dismap.view(-1)<=self.dis_th).float()
|
125 |
+
|
126 |
+
pos_map = pos_.reshape(-1,height,width)
|
127 |
+
neg_map = neg_.reshape(-1,height,width)
|
128 |
+
|
129 |
+
md_angle = torch.atan2(md_map[1], md_map[0])
|
130 |
+
pos_angle = torch.atan2(pos_map[1],pos_map[0])
|
131 |
+
neg_angle = torch.atan2(neg_map[1],neg_map[0])
|
132 |
+
|
133 |
+
mask *= (pos_angle.reshape(-1)>self.ang_th*np.pi/2.0)
|
134 |
+
mask *= (neg_angle.reshape(-1)<-self.ang_th*np.pi/2.0)
|
135 |
+
|
136 |
+
pos_angle_n = pos_angle/(np.pi/2)
|
137 |
+
neg_angle_n = -neg_angle/(np.pi/2)
|
138 |
+
md_angle_n = md_angle/(np.pi*2) + 0.5
|
139 |
+
mask = mask.reshape(height,width)
|
140 |
+
|
141 |
+
|
142 |
+
hafm_ang = torch.cat((md_angle_n[None],pos_angle_n[None],neg_angle_n[None],),dim=0)
|
143 |
+
hafm_dis = dismap.clamp(max=self.dis_th)/self.dis_th
|
144 |
+
mask = mask[None]
|
145 |
+
target = {'jloc':jmap[None],
|
146 |
+
'joff':joff,
|
147 |
+
'cloc': cmap[None],
|
148 |
+
'md': hafm_ang,
|
149 |
+
'dis': hafm_dis,
|
150 |
+
'mask': mask
|
151 |
+
}
|
152 |
+
return target, meta
|
scalelsd/ssl/backbones/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .build import build_backbone
|
scalelsd/ssl/backbones/build.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .dpt.models import DPTFieldModel
|
2 |
+
|
3 |
+
def build_dpt(
|
4 |
+
basemodel = "vitb_rn50_384",
|
5 |
+
features=256,
|
6 |
+
readout = "project",
|
7 |
+
channels_last = False,
|
8 |
+
use_bn = True,
|
9 |
+
enable_attention_hooks = False,
|
10 |
+
head_size = [[3],[1],[1],[2],[2]],
|
11 |
+
use_layer_scale = False,
|
12 |
+
**kwargs):
|
13 |
+
|
14 |
+
model = DPTFieldModel(
|
15 |
+
features=features,
|
16 |
+
backbone=basemodel,
|
17 |
+
readout=readout,
|
18 |
+
channels_last=channels_last,
|
19 |
+
use_bn=use_bn,
|
20 |
+
enable_attention_hooks=enable_attention_hooks,
|
21 |
+
head_size=head_size,
|
22 |
+
use_layer_scale=use_layer_scale
|
23 |
+
)
|
24 |
+
|
25 |
+
return model
|
26 |
+
|
27 |
+
def build_backbone(**kwargs):
|
28 |
+
return build_dpt(**kwargs)
|
scalelsd/ssl/backbones/dpt/__init__.py
ADDED
File without changes
|
scalelsd/ssl/backbones/dpt/base_model.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
class BaseModel(torch.nn.Module):
|
5 |
+
def load(self, path):
|
6 |
+
"""Load model from file.
|
7 |
+
|
8 |
+
Args:
|
9 |
+
path (str): file path
|
10 |
+
"""
|
11 |
+
parameters = torch.load(path, map_location=torch.device("cpu"))
|
12 |
+
|
13 |
+
if "optimizer" in parameters:
|
14 |
+
parameters = parameters["model"]
|
15 |
+
|
16 |
+
self.load_state_dict(parameters)
|
scalelsd/ssl/backbones/dpt/blocks.py
ADDED
@@ -0,0 +1,388 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from .vit import (
|
5 |
+
_make_pretrained_vitb_rn50_384,
|
6 |
+
_make_pretrained_vitl16_384,
|
7 |
+
_make_pretrained_vitb16_384,
|
8 |
+
forward_vit,
|
9 |
+
)
|
10 |
+
|
11 |
+
|
12 |
+
def _make_encoder(
|
13 |
+
backbone,
|
14 |
+
features,
|
15 |
+
use_pretrained,
|
16 |
+
groups=1,
|
17 |
+
expand=False,
|
18 |
+
exportable=True,
|
19 |
+
hooks=None,
|
20 |
+
use_vit_only=False,
|
21 |
+
use_readout="ignore",
|
22 |
+
enable_attention_hooks=False,
|
23 |
+
use_layer_scale=False,
|
24 |
+
):
|
25 |
+
if backbone == "vitl16_384":
|
26 |
+
pretrained = _make_pretrained_vitl16_384(
|
27 |
+
use_pretrained,
|
28 |
+
hooks=hooks,
|
29 |
+
use_readout=use_readout,
|
30 |
+
enable_attention_hooks=enable_attention_hooks,
|
31 |
+
)
|
32 |
+
scratch = _make_scratch(
|
33 |
+
[256, 512, 1024, 1024], features, groups=groups, expand=expand
|
34 |
+
) # ViT-L/16 - 85.0% Top1 (backbone)
|
35 |
+
elif backbone == "vitb_rn50_384":
|
36 |
+
pretrained = _make_pretrained_vitb_rn50_384(
|
37 |
+
use_pretrained,
|
38 |
+
hooks=hooks,
|
39 |
+
use_vit_only=use_vit_only,
|
40 |
+
use_readout=use_readout,
|
41 |
+
enable_attention_hooks=enable_attention_hooks,
|
42 |
+
use_layer_scale=use_layer_scale,
|
43 |
+
)
|
44 |
+
scratch = _make_scratch(
|
45 |
+
[256, 512, 768, 768], features, groups=groups, expand=expand
|
46 |
+
) # ViT-H/16 - 85.0% Top1 (backbone)
|
47 |
+
elif backbone == "vitb16_384":
|
48 |
+
pretrained = _make_pretrained_vitb16_384(
|
49 |
+
use_pretrained,
|
50 |
+
hooks=hooks,
|
51 |
+
use_readout=use_readout,
|
52 |
+
enable_attention_hooks=enable_attention_hooks,
|
53 |
+
)
|
54 |
+
scratch = _make_scratch(
|
55 |
+
[96, 192, 384, 768], features, groups=groups, expand=expand
|
56 |
+
) # ViT-B/16 - 84.6% Top1 (backbone)
|
57 |
+
elif backbone == "resnext101_wsl":
|
58 |
+
pretrained = _make_pretrained_resnext101_wsl(use_pretrained)
|
59 |
+
scratch = _make_scratch(
|
60 |
+
[256, 512, 1024, 2048], features, groups=groups, expand=expand
|
61 |
+
) # efficientnet_lite3
|
62 |
+
else:
|
63 |
+
print(f"Backbone '{backbone}' not implemented")
|
64 |
+
assert False
|
65 |
+
|
66 |
+
return pretrained, scratch
|
67 |
+
|
68 |
+
|
69 |
+
def _make_scratch(in_shape, out_shape, groups=1, expand=False):
|
70 |
+
scratch = nn.Module()
|
71 |
+
|
72 |
+
out_shape1 = out_shape
|
73 |
+
out_shape2 = out_shape
|
74 |
+
out_shape3 = out_shape
|
75 |
+
out_shape4 = out_shape
|
76 |
+
if expand == True:
|
77 |
+
out_shape1 = out_shape
|
78 |
+
out_shape2 = out_shape * 2
|
79 |
+
out_shape3 = out_shape * 4
|
80 |
+
out_shape4 = out_shape * 8
|
81 |
+
|
82 |
+
scratch.layer1_rn = nn.Conv2d(
|
83 |
+
in_shape[0],
|
84 |
+
out_shape1,
|
85 |
+
kernel_size=3,
|
86 |
+
stride=1,
|
87 |
+
padding=1,
|
88 |
+
bias=False,
|
89 |
+
groups=groups,
|
90 |
+
)
|
91 |
+
scratch.layer2_rn = nn.Conv2d(
|
92 |
+
in_shape[1],
|
93 |
+
out_shape2,
|
94 |
+
kernel_size=3,
|
95 |
+
stride=1,
|
96 |
+
padding=1,
|
97 |
+
bias=False,
|
98 |
+
groups=groups,
|
99 |
+
)
|
100 |
+
scratch.layer3_rn = nn.Conv2d(
|
101 |
+
in_shape[2],
|
102 |
+
out_shape3,
|
103 |
+
kernel_size=3,
|
104 |
+
stride=1,
|
105 |
+
padding=1,
|
106 |
+
bias=False,
|
107 |
+
groups=groups,
|
108 |
+
)
|
109 |
+
scratch.layer4_rn = nn.Conv2d(
|
110 |
+
in_shape[3],
|
111 |
+
out_shape4,
|
112 |
+
kernel_size=3,
|
113 |
+
stride=1,
|
114 |
+
padding=1,
|
115 |
+
bias=False,
|
116 |
+
groups=groups,
|
117 |
+
)
|
118 |
+
|
119 |
+
return scratch
|
120 |
+
|
121 |
+
|
122 |
+
def _make_resnet_backbone(resnet):
|
123 |
+
pretrained = nn.Module()
|
124 |
+
pretrained.layer1 = nn.Sequential(
|
125 |
+
resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1
|
126 |
+
)
|
127 |
+
|
128 |
+
pretrained.layer2 = resnet.layer2
|
129 |
+
pretrained.layer3 = resnet.layer3
|
130 |
+
pretrained.layer4 = resnet.layer4
|
131 |
+
|
132 |
+
return pretrained
|
133 |
+
|
134 |
+
|
135 |
+
def _make_pretrained_resnext101_wsl(use_pretrained):
|
136 |
+
resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl")
|
137 |
+
return _make_resnet_backbone(resnet)
|
138 |
+
|
139 |
+
|
140 |
+
class Interpolate(nn.Module):
|
141 |
+
"""Interpolation module."""
|
142 |
+
|
143 |
+
def __init__(self, scale_factor, mode, align_corners=False):
|
144 |
+
"""Init.
|
145 |
+
|
146 |
+
Args:
|
147 |
+
scale_factor (float): scaling
|
148 |
+
mode (str): interpolation mode
|
149 |
+
"""
|
150 |
+
super(Interpolate, self).__init__()
|
151 |
+
|
152 |
+
self.interp = nn.functional.interpolate
|
153 |
+
self.scale_factor = scale_factor
|
154 |
+
self.mode = mode
|
155 |
+
self.align_corners = align_corners
|
156 |
+
|
157 |
+
def forward(self, x):
|
158 |
+
"""Forward pass.
|
159 |
+
|
160 |
+
Args:
|
161 |
+
x (tensor): input
|
162 |
+
|
163 |
+
Returns:
|
164 |
+
tensor: interpolated data
|
165 |
+
"""
|
166 |
+
|
167 |
+
x = self.interp(
|
168 |
+
x,
|
169 |
+
scale_factor=self.scale_factor,
|
170 |
+
mode=self.mode,
|
171 |
+
align_corners=self.align_corners,
|
172 |
+
)
|
173 |
+
|
174 |
+
# x = self.interp(x, scale_factor=self.scale_factor)
|
175 |
+
# x = self.interp(x, scale_factor=self.scale_factor, mode='bilinear', align_corners=True)
|
176 |
+
|
177 |
+
return x
|
178 |
+
|
179 |
+
|
180 |
+
class ResidualConvUnit(nn.Module):
|
181 |
+
"""Residual convolution module."""
|
182 |
+
|
183 |
+
def __init__(self, features):
|
184 |
+
"""Init.
|
185 |
+
|
186 |
+
Args:
|
187 |
+
features (int): number of features
|
188 |
+
"""
|
189 |
+
super().__init__()
|
190 |
+
|
191 |
+
self.conv1 = nn.Conv2d(
|
192 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True
|
193 |
+
)
|
194 |
+
|
195 |
+
self.conv2 = nn.Conv2d(
|
196 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True
|
197 |
+
)
|
198 |
+
|
199 |
+
self.relu = nn.ReLU(inplace=True)
|
200 |
+
|
201 |
+
def forward(self, x):
|
202 |
+
"""Forward pass.
|
203 |
+
|
204 |
+
Args:
|
205 |
+
x (tensor): input
|
206 |
+
|
207 |
+
Returns:
|
208 |
+
tensor: output
|
209 |
+
"""
|
210 |
+
out = self.relu(x)
|
211 |
+
out = self.conv1(out)
|
212 |
+
out = self.relu(out)
|
213 |
+
out = self.conv2(out)
|
214 |
+
|
215 |
+
return out + x
|
216 |
+
|
217 |
+
|
218 |
+
class FeatureFusionBlock(nn.Module):
|
219 |
+
"""Feature fusion block."""
|
220 |
+
|
221 |
+
def __init__(self, features):
|
222 |
+
"""Init.
|
223 |
+
|
224 |
+
Args:
|
225 |
+
features (int): number of features
|
226 |
+
"""
|
227 |
+
super(FeatureFusionBlock, self).__init__()
|
228 |
+
|
229 |
+
self.resConfUnit1 = ResidualConvUnit(features)
|
230 |
+
self.resConfUnit2 = ResidualConvUnit(features)
|
231 |
+
|
232 |
+
def forward(self, *xs):
|
233 |
+
"""Forward pass.
|
234 |
+
|
235 |
+
Returns:
|
236 |
+
tensor: output
|
237 |
+
"""
|
238 |
+
output = xs[0]
|
239 |
+
|
240 |
+
if len(xs) == 2:
|
241 |
+
output += self.resConfUnit1(xs[1])
|
242 |
+
|
243 |
+
output = self.resConfUnit2(output)
|
244 |
+
|
245 |
+
output = nn.functional.interpolate(
|
246 |
+
output, scale_factor=2, mode="bilinear", align_corners=True
|
247 |
+
)
|
248 |
+
|
249 |
+
return output
|
250 |
+
|
251 |
+
|
252 |
+
class ResidualConvUnit_custom(nn.Module):
|
253 |
+
"""Residual convolution module."""
|
254 |
+
|
255 |
+
def __init__(self, features, activation, bn):
|
256 |
+
"""Init.
|
257 |
+
|
258 |
+
Args:
|
259 |
+
features (int): number of features
|
260 |
+
"""
|
261 |
+
super().__init__()
|
262 |
+
|
263 |
+
self.bn = bn
|
264 |
+
|
265 |
+
self.groups = 1
|
266 |
+
|
267 |
+
self.conv1 = nn.Conv2d(
|
268 |
+
features,
|
269 |
+
features,
|
270 |
+
kernel_size=3,
|
271 |
+
stride=1,
|
272 |
+
padding=1,
|
273 |
+
bias=not self.bn,
|
274 |
+
groups=self.groups,
|
275 |
+
)
|
276 |
+
|
277 |
+
self.conv2 = nn.Conv2d(
|
278 |
+
features,
|
279 |
+
features,
|
280 |
+
kernel_size=3,
|
281 |
+
stride=1,
|
282 |
+
padding=1,
|
283 |
+
bias=not self.bn,
|
284 |
+
groups=self.groups,
|
285 |
+
)
|
286 |
+
|
287 |
+
if self.bn == True:
|
288 |
+
self.bn1 = nn.BatchNorm2d(features)
|
289 |
+
self.bn2 = nn.BatchNorm2d(features)
|
290 |
+
|
291 |
+
self.activation = activation
|
292 |
+
|
293 |
+
self.skip_add = nn.quantized.FloatFunctional()
|
294 |
+
|
295 |
+
def forward(self, x):
|
296 |
+
"""Forward pass.
|
297 |
+
|
298 |
+
Args:
|
299 |
+
x (tensor): input
|
300 |
+
|
301 |
+
Returns:
|
302 |
+
tensor: output
|
303 |
+
"""
|
304 |
+
|
305 |
+
out = self.activation(x)
|
306 |
+
out = self.conv1(out)
|
307 |
+
if self.bn == True:
|
308 |
+
out = self.bn1(out)
|
309 |
+
|
310 |
+
out = self.activation(out)
|
311 |
+
out = self.conv2(out)
|
312 |
+
if self.bn == True:
|
313 |
+
out = self.bn2(out)
|
314 |
+
|
315 |
+
if self.groups > 1:
|
316 |
+
out = self.conv_merge(out)
|
317 |
+
|
318 |
+
return self.skip_add.add(out, x)
|
319 |
+
|
320 |
+
# return out + x
|
321 |
+
|
322 |
+
|
323 |
+
class FeatureFusionBlock_custom(nn.Module):
|
324 |
+
"""Feature fusion block."""
|
325 |
+
|
326 |
+
def __init__(
|
327 |
+
self,
|
328 |
+
features,
|
329 |
+
activation,
|
330 |
+
deconv=False,
|
331 |
+
bn=False,
|
332 |
+
expand=False,
|
333 |
+
align_corners=True,
|
334 |
+
):
|
335 |
+
"""Init.
|
336 |
+
|
337 |
+
Args:
|
338 |
+
features (int): number of features
|
339 |
+
"""
|
340 |
+
super(FeatureFusionBlock_custom, self).__init__()
|
341 |
+
|
342 |
+
self.deconv = deconv
|
343 |
+
self.align_corners = align_corners
|
344 |
+
|
345 |
+
self.groups = 1
|
346 |
+
|
347 |
+
self.expand = expand
|
348 |
+
out_features = features
|
349 |
+
if self.expand == True:
|
350 |
+
out_features = features // 2
|
351 |
+
|
352 |
+
self.out_conv = nn.Conv2d(
|
353 |
+
features,
|
354 |
+
out_features,
|
355 |
+
kernel_size=1,
|
356 |
+
stride=1,
|
357 |
+
padding=0,
|
358 |
+
bias=True,
|
359 |
+
groups=1,
|
360 |
+
)
|
361 |
+
|
362 |
+
self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn)
|
363 |
+
self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn)
|
364 |
+
|
365 |
+
self.skip_add = nn.quantized.FloatFunctional()
|
366 |
+
|
367 |
+
def forward(self, *xs):
|
368 |
+
"""Forward pass.
|
369 |
+
|
370 |
+
Returns:
|
371 |
+
tensor: output
|
372 |
+
"""
|
373 |
+
output = xs[0]
|
374 |
+
|
375 |
+
if len(xs) == 2:
|
376 |
+
res = self.resConfUnit1(xs[1])
|
377 |
+
output = self.skip_add.add(output, res)
|
378 |
+
# output += res
|
379 |
+
|
380 |
+
output = self.resConfUnit2(output)
|
381 |
+
|
382 |
+
output = nn.functional.interpolate(
|
383 |
+
output, scale_factor=2, mode="bilinear", align_corners=self.align_corners
|
384 |
+
)
|
385 |
+
|
386 |
+
output = self.out_conv(output)
|
387 |
+
|
388 |
+
return output
|
scalelsd/ssl/backbones/dpt/midas_net.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
|
2 |
+
This file contains code that is adapted from
|
3 |
+
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
|
4 |
+
"""
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
from .base_model import BaseModel
|
9 |
+
from .blocks import FeatureFusionBlock, Interpolate, _make_encoder
|
10 |
+
|
11 |
+
|
12 |
+
class MidasNet_large(BaseModel):
|
13 |
+
"""Network for monocular depth estimation."""
|
14 |
+
|
15 |
+
def __init__(self, path=None, features=256, non_negative=True):
|
16 |
+
"""Init.
|
17 |
+
|
18 |
+
Args:
|
19 |
+
path (str, optional): Path to saved model. Defaults to None.
|
20 |
+
features (int, optional): Number of features. Defaults to 256.
|
21 |
+
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
|
22 |
+
"""
|
23 |
+
print("Loading weights: ", path)
|
24 |
+
|
25 |
+
super(MidasNet_large, self).__init__()
|
26 |
+
|
27 |
+
use_pretrained = False if path is None else True
|
28 |
+
|
29 |
+
self.pretrained, self.scratch = _make_encoder(
|
30 |
+
backbone="resnext101_wsl", features=features, use_pretrained=use_pretrained
|
31 |
+
)
|
32 |
+
|
33 |
+
self.scratch.refinenet4 = FeatureFusionBlock(features)
|
34 |
+
self.scratch.refinenet3 = FeatureFusionBlock(features)
|
35 |
+
self.scratch.refinenet2 = FeatureFusionBlock(features)
|
36 |
+
self.scratch.refinenet1 = FeatureFusionBlock(features)
|
37 |
+
|
38 |
+
self.scratch.output_conv = nn.Sequential(
|
39 |
+
nn.Conv2d(features, 128, kernel_size=3, stride=1, padding=1),
|
40 |
+
Interpolate(scale_factor=2, mode="bilinear"),
|
41 |
+
nn.Conv2d(128, 32, kernel_size=3, stride=1, padding=1),
|
42 |
+
nn.ReLU(True),
|
43 |
+
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
44 |
+
nn.ReLU(True) if non_negative else nn.Identity(),
|
45 |
+
)
|
46 |
+
|
47 |
+
if path:
|
48 |
+
self.load(path)
|
49 |
+
|
50 |
+
def forward(self, x):
|
51 |
+
"""Forward pass.
|
52 |
+
|
53 |
+
Args:
|
54 |
+
x (tensor): input data (image)
|
55 |
+
|
56 |
+
Returns:
|
57 |
+
tensor: depth
|
58 |
+
"""
|
59 |
+
|
60 |
+
layer_1 = self.pretrained.layer1(x)
|
61 |
+
layer_2 = self.pretrained.layer2(layer_1)
|
62 |
+
layer_3 = self.pretrained.layer3(layer_2)
|
63 |
+
layer_4 = self.pretrained.layer4(layer_3)
|
64 |
+
|
65 |
+
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
66 |
+
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
67 |
+
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
68 |
+
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
69 |
+
|
70 |
+
path_4 = self.scratch.refinenet4(layer_4_rn)
|
71 |
+
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
72 |
+
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
73 |
+
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
74 |
+
|
75 |
+
out = self.scratch.output_conv(path_1)
|
76 |
+
|
77 |
+
return torch.squeeze(out, dim=1)
|
scalelsd/ssl/backbones/dpt/models.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
from .base_model import BaseModel
|
6 |
+
from .blocks import (
|
7 |
+
FeatureFusionBlock,
|
8 |
+
FeatureFusionBlock_custom,
|
9 |
+
Interpolate,
|
10 |
+
_make_encoder,
|
11 |
+
forward_vit,
|
12 |
+
)
|
13 |
+
from ..multi_task_head import MultitaskHead
|
14 |
+
|
15 |
+
|
16 |
+
def _make_fusion_block(features, use_bn):
|
17 |
+
return FeatureFusionBlock_custom(
|
18 |
+
features,
|
19 |
+
nn.ReLU(False),
|
20 |
+
deconv=False,
|
21 |
+
bn=use_bn,
|
22 |
+
expand=False,
|
23 |
+
align_corners=True,
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
class DPT(BaseModel):
|
28 |
+
def __init__(
|
29 |
+
self,
|
30 |
+
head,
|
31 |
+
features=256,
|
32 |
+
backbone="vitb_rn50_384",
|
33 |
+
readout="project",
|
34 |
+
channels_last=False,
|
35 |
+
use_bn=False,
|
36 |
+
enable_attention_hooks=False,
|
37 |
+
use_layer_scale=False,
|
38 |
+
):
|
39 |
+
|
40 |
+
super(DPT, self).__init__()
|
41 |
+
|
42 |
+
self.channels_last = channels_last
|
43 |
+
|
44 |
+
hooks = {
|
45 |
+
"vitb_rn50_384": [0, 1, 8, 11],
|
46 |
+
"vitb16_384": [2, 5, 8, 11],
|
47 |
+
"vitl16_384": [5, 11, 17, 23],
|
48 |
+
}
|
49 |
+
|
50 |
+
# Instantiate backbone and reassemble blocks
|
51 |
+
self.pretrained, self.scratch = _make_encoder(
|
52 |
+
backbone,
|
53 |
+
features,
|
54 |
+
False, # Set to true of you want to train from scratch, uses ImageNet weights
|
55 |
+
groups=1,
|
56 |
+
expand=False,
|
57 |
+
exportable=False,
|
58 |
+
hooks=hooks[backbone],
|
59 |
+
use_readout=readout,
|
60 |
+
enable_attention_hooks=enable_attention_hooks,
|
61 |
+
use_layer_scale=use_layer_scale,
|
62 |
+
)
|
63 |
+
|
64 |
+
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
|
65 |
+
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
|
66 |
+
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
|
67 |
+
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
|
68 |
+
|
69 |
+
self.scratch.output_conv = head
|
70 |
+
|
71 |
+
def forward(self, x):
|
72 |
+
if self.channels_last == True:
|
73 |
+
x.contiguous(memory_format=torch.channels_last)
|
74 |
+
|
75 |
+
layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x)
|
76 |
+
|
77 |
+
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
78 |
+
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
79 |
+
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
80 |
+
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
81 |
+
|
82 |
+
path_4 = self.scratch.refinenet4(layer_4_rn)
|
83 |
+
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
84 |
+
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
85 |
+
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
86 |
+
|
87 |
+
out = self.scratch.output_conv(path_1)
|
88 |
+
|
89 |
+
return out
|
90 |
+
|
91 |
+
class DPTFieldModel(DPT):
|
92 |
+
def __init__(self, path=None, non_negative=True, head_size=[[3],[1],[1],[2],[2]], **kwargs):
|
93 |
+
features = kwargs["features"] if "features" in kwargs else 256
|
94 |
+
|
95 |
+
kwargs["use_bn"] = True
|
96 |
+
|
97 |
+
num_class = sum(sum(head_size,[]))
|
98 |
+
head = nn.Sequential(
|
99 |
+
nn.Conv2d(features, features//2, kernel_size=3, stride=1, padding=1),
|
100 |
+
# nn.BatchNorm2d(features//2),
|
101 |
+
nn.ReLU(True),
|
102 |
+
MultitaskHead(features//2, num_class, head_size=head_size),
|
103 |
+
)
|
104 |
+
|
105 |
+
super().__init__(head, **kwargs)
|
106 |
+
|
107 |
+
self.stride = 2
|
108 |
+
|
109 |
+
def forward(self, x):
|
110 |
+
if x.shape[1] == 1:
|
111 |
+
x = torch.cat([x,x,x], dim=1)
|
112 |
+
|
113 |
+
out = super().forward(x)
|
114 |
+
return out, None
|
115 |
+
|
scalelsd/ssl/backbones/dpt/transforms.py
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
import math
|
4 |
+
|
5 |
+
|
6 |
+
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
|
7 |
+
"""Rezise the sample to ensure the given size. Keeps aspect ratio.
|
8 |
+
|
9 |
+
Args:
|
10 |
+
sample (dict): sample
|
11 |
+
size (tuple): image size
|
12 |
+
|
13 |
+
Returns:
|
14 |
+
tuple: new size
|
15 |
+
"""
|
16 |
+
shape = list(sample["disparity"].shape)
|
17 |
+
|
18 |
+
if shape[0] >= size[0] and shape[1] >= size[1]:
|
19 |
+
return sample
|
20 |
+
|
21 |
+
scale = [0, 0]
|
22 |
+
scale[0] = size[0] / shape[0]
|
23 |
+
scale[1] = size[1] / shape[1]
|
24 |
+
|
25 |
+
scale = max(scale)
|
26 |
+
|
27 |
+
shape[0] = math.ceil(scale * shape[0])
|
28 |
+
shape[1] = math.ceil(scale * shape[1])
|
29 |
+
|
30 |
+
# resize
|
31 |
+
sample["image"] = cv2.resize(
|
32 |
+
sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method
|
33 |
+
)
|
34 |
+
|
35 |
+
sample["disparity"] = cv2.resize(
|
36 |
+
sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST
|
37 |
+
)
|
38 |
+
sample["mask"] = cv2.resize(
|
39 |
+
sample["mask"].astype(np.float32),
|
40 |
+
tuple(shape[::-1]),
|
41 |
+
interpolation=cv2.INTER_NEAREST,
|
42 |
+
)
|
43 |
+
sample["mask"] = sample["mask"].astype(bool)
|
44 |
+
|
45 |
+
return tuple(shape)
|
46 |
+
|
47 |
+
|
48 |
+
class Resize(object):
|
49 |
+
"""Resize sample to given size (width, height)."""
|
50 |
+
|
51 |
+
def __init__(
|
52 |
+
self,
|
53 |
+
width,
|
54 |
+
height,
|
55 |
+
resize_target=True,
|
56 |
+
keep_aspect_ratio=False,
|
57 |
+
ensure_multiple_of=1,
|
58 |
+
resize_method="lower_bound",
|
59 |
+
image_interpolation_method=cv2.INTER_AREA,
|
60 |
+
):
|
61 |
+
"""Init.
|
62 |
+
|
63 |
+
Args:
|
64 |
+
width (int): desired output width
|
65 |
+
height (int): desired output height
|
66 |
+
resize_target (bool, optional):
|
67 |
+
True: Resize the full sample (image, mask, target).
|
68 |
+
False: Resize image only.
|
69 |
+
Defaults to True.
|
70 |
+
keep_aspect_ratio (bool, optional):
|
71 |
+
True: Keep the aspect ratio of the input sample.
|
72 |
+
Output sample might not have the given width and height, and
|
73 |
+
resize behaviour depends on the parameter 'resize_method'.
|
74 |
+
Defaults to False.
|
75 |
+
ensure_multiple_of (int, optional):
|
76 |
+
Output width and height is constrained to be multiple of this parameter.
|
77 |
+
Defaults to 1.
|
78 |
+
resize_method (str, optional):
|
79 |
+
"lower_bound": Output will be at least as large as the given size.
|
80 |
+
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
|
81 |
+
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
|
82 |
+
Defaults to "lower_bound".
|
83 |
+
"""
|
84 |
+
self.__width = width
|
85 |
+
self.__height = height
|
86 |
+
|
87 |
+
self.__resize_target = resize_target
|
88 |
+
self.__keep_aspect_ratio = keep_aspect_ratio
|
89 |
+
self.__multiple_of = ensure_multiple_of
|
90 |
+
self.__resize_method = resize_method
|
91 |
+
self.__image_interpolation_method = image_interpolation_method
|
92 |
+
|
93 |
+
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
|
94 |
+
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
95 |
+
|
96 |
+
if max_val is not None and y > max_val:
|
97 |
+
y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
98 |
+
|
99 |
+
if y < min_val:
|
100 |
+
y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
101 |
+
|
102 |
+
return y
|
103 |
+
|
104 |
+
def get_size(self, width, height):
|
105 |
+
# determine new height and width
|
106 |
+
scale_height = self.__height / height
|
107 |
+
scale_width = self.__width / width
|
108 |
+
|
109 |
+
if self.__keep_aspect_ratio:
|
110 |
+
if self.__resize_method == "lower_bound":
|
111 |
+
# scale such that output size is lower bound
|
112 |
+
if scale_width > scale_height:
|
113 |
+
# fit width
|
114 |
+
scale_height = scale_width
|
115 |
+
else:
|
116 |
+
# fit height
|
117 |
+
scale_width = scale_height
|
118 |
+
elif self.__resize_method == "upper_bound":
|
119 |
+
# scale such that output size is upper bound
|
120 |
+
if scale_width < scale_height:
|
121 |
+
# fit width
|
122 |
+
scale_height = scale_width
|
123 |
+
else:
|
124 |
+
# fit height
|
125 |
+
scale_width = scale_height
|
126 |
+
elif self.__resize_method == "minimal":
|
127 |
+
# scale as least as possbile
|
128 |
+
if abs(1 - scale_width) < abs(1 - scale_height):
|
129 |
+
# fit width
|
130 |
+
scale_height = scale_width
|
131 |
+
else:
|
132 |
+
# fit height
|
133 |
+
scale_width = scale_height
|
134 |
+
else:
|
135 |
+
raise ValueError(
|
136 |
+
f"resize_method {self.__resize_method} not implemented"
|
137 |
+
)
|
138 |
+
|
139 |
+
if self.__resize_method == "lower_bound":
|
140 |
+
new_height = self.constrain_to_multiple_of(
|
141 |
+
scale_height * height, min_val=self.__height
|
142 |
+
)
|
143 |
+
new_width = self.constrain_to_multiple_of(
|
144 |
+
scale_width * width, min_val=self.__width
|
145 |
+
)
|
146 |
+
elif self.__resize_method == "upper_bound":
|
147 |
+
new_height = self.constrain_to_multiple_of(
|
148 |
+
scale_height * height, max_val=self.__height
|
149 |
+
)
|
150 |
+
new_width = self.constrain_to_multiple_of(
|
151 |
+
scale_width * width, max_val=self.__width
|
152 |
+
)
|
153 |
+
elif self.__resize_method == "minimal":
|
154 |
+
new_height = self.constrain_to_multiple_of(scale_height * height)
|
155 |
+
new_width = self.constrain_to_multiple_of(scale_width * width)
|
156 |
+
else:
|
157 |
+
raise ValueError(f"resize_method {self.__resize_method} not implemented")
|
158 |
+
|
159 |
+
return (new_width, new_height)
|
160 |
+
|
161 |
+
def __call__(self, sample):
|
162 |
+
width, height = self.get_size(
|
163 |
+
sample["image"].shape[1], sample["image"].shape[0]
|
164 |
+
)
|
165 |
+
|
166 |
+
# resize sample
|
167 |
+
sample["image"] = cv2.resize(
|
168 |
+
sample["image"],
|
169 |
+
(width, height),
|
170 |
+
interpolation=self.__image_interpolation_method,
|
171 |
+
)
|
172 |
+
|
173 |
+
if self.__resize_target:
|
174 |
+
if "disparity" in sample:
|
175 |
+
sample["disparity"] = cv2.resize(
|
176 |
+
sample["disparity"],
|
177 |
+
(width, height),
|
178 |
+
interpolation=cv2.INTER_NEAREST,
|
179 |
+
)
|
180 |
+
|
181 |
+
if "depth" in sample:
|
182 |
+
sample["depth"] = cv2.resize(
|
183 |
+
sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST
|
184 |
+
)
|
185 |
+
|
186 |
+
sample["mask"] = cv2.resize(
|
187 |
+
sample["mask"].astype(np.float32),
|
188 |
+
(width, height),
|
189 |
+
interpolation=cv2.INTER_NEAREST,
|
190 |
+
)
|
191 |
+
sample["mask"] = sample["mask"].astype(bool)
|
192 |
+
|
193 |
+
return sample
|
194 |
+
|
195 |
+
|
196 |
+
class NormalizeImage(object):
|
197 |
+
"""Normlize image by given mean and std."""
|
198 |
+
|
199 |
+
def __init__(self, mean, std):
|
200 |
+
self.__mean = mean
|
201 |
+
self.__std = std
|
202 |
+
|
203 |
+
def __call__(self, sample):
|
204 |
+
sample["image"] = (sample["image"] - self.__mean) / self.__std
|
205 |
+
|
206 |
+
return sample
|
207 |
+
|
208 |
+
|
209 |
+
class PrepareForNet(object):
|
210 |
+
"""Prepare sample for usage as network input."""
|
211 |
+
|
212 |
+
def __init__(self):
|
213 |
+
pass
|
214 |
+
|
215 |
+
def __call__(self, sample):
|
216 |
+
image = np.transpose(sample["image"], (2, 0, 1))
|
217 |
+
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
|
218 |
+
|
219 |
+
if "mask" in sample:
|
220 |
+
sample["mask"] = sample["mask"].astype(np.float32)
|
221 |
+
sample["mask"] = np.ascontiguousarray(sample["mask"])
|
222 |
+
|
223 |
+
if "disparity" in sample:
|
224 |
+
disparity = sample["disparity"].astype(np.float32)
|
225 |
+
sample["disparity"] = np.ascontiguousarray(disparity)
|
226 |
+
|
227 |
+
if "depth" in sample:
|
228 |
+
depth = sample["depth"].astype(np.float32)
|
229 |
+
sample["depth"] = np.ascontiguousarray(depth)
|
230 |
+
|
231 |
+
return sample
|
scalelsd/ssl/backbones/dpt/vit.py
ADDED
@@ -0,0 +1,586 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import timm
|
4 |
+
import types
|
5 |
+
import math
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
|
9 |
+
activations = {}
|
10 |
+
|
11 |
+
|
12 |
+
def get_activation(name):
|
13 |
+
def hook(model, input, output):
|
14 |
+
activations[name] = output
|
15 |
+
|
16 |
+
return hook
|
17 |
+
|
18 |
+
|
19 |
+
attention = {}
|
20 |
+
|
21 |
+
|
22 |
+
def get_attention(name):
|
23 |
+
def hook(module, input, output):
|
24 |
+
x = input[0]
|
25 |
+
B, N, C = x.shape
|
26 |
+
qkv = (
|
27 |
+
module.qkv(x)
|
28 |
+
.reshape(B, N, 3, module.num_heads, C // module.num_heads)
|
29 |
+
.permute(2, 0, 3, 1, 4).contiguous()
|
30 |
+
)
|
31 |
+
q, k, v = (
|
32 |
+
qkv[0],
|
33 |
+
qkv[1],
|
34 |
+
qkv[2],
|
35 |
+
) # make torchscript happy (cannot use tensor as tuple)
|
36 |
+
|
37 |
+
attn = (q @ k.transpose(-2, -1).contiguous()) * module.scale
|
38 |
+
|
39 |
+
attn = attn.softmax(dim=-1) # [:,:,1,1:]
|
40 |
+
attention[name] = attn
|
41 |
+
|
42 |
+
return hook
|
43 |
+
|
44 |
+
|
45 |
+
def get_mean_attention_map(attn, token, shape):
|
46 |
+
attn = attn[:, :, token, 1:]
|
47 |
+
attn = attn.unflatten(2, torch.Size([shape[2] // 16, shape[3] // 16])).float()
|
48 |
+
attn = torch.nn.functional.interpolate(
|
49 |
+
attn, size=shape[2:], mode="bicubic", align_corners=False
|
50 |
+
).squeeze(0)
|
51 |
+
|
52 |
+
all_attn = torch.mean(attn, 0)
|
53 |
+
|
54 |
+
return all_attn
|
55 |
+
|
56 |
+
|
57 |
+
class Slice(nn.Module):
|
58 |
+
def __init__(self, start_index=1):
|
59 |
+
super(Slice, self).__init__()
|
60 |
+
self.start_index = start_index
|
61 |
+
|
62 |
+
def forward(self, x):
|
63 |
+
return x[:, self.start_index :]
|
64 |
+
|
65 |
+
|
66 |
+
class AddReadout(nn.Module):
|
67 |
+
def __init__(self, start_index=1):
|
68 |
+
super(AddReadout, self).__init__()
|
69 |
+
self.start_index = start_index
|
70 |
+
|
71 |
+
def forward(self, x):
|
72 |
+
if self.start_index == 2:
|
73 |
+
readout = (x[:, 0] + x[:, 1]) / 2
|
74 |
+
else:
|
75 |
+
readout = x[:, 0]
|
76 |
+
return x[:, self.start_index :] + readout.unsqueeze(1)
|
77 |
+
|
78 |
+
|
79 |
+
class ProjectReadout(nn.Module):
|
80 |
+
def __init__(self, in_features, start_index=1):
|
81 |
+
super(ProjectReadout, self).__init__()
|
82 |
+
self.start_index = start_index
|
83 |
+
|
84 |
+
self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU())
|
85 |
+
|
86 |
+
def forward(self, x):
|
87 |
+
readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :])
|
88 |
+
features = torch.cat((x[:, self.start_index :], readout), -1)
|
89 |
+
|
90 |
+
return self.project(features)
|
91 |
+
|
92 |
+
|
93 |
+
class Transpose(nn.Module):
|
94 |
+
def __init__(self, dim0, dim1):
|
95 |
+
super(Transpose, self).__init__()
|
96 |
+
self.dim0 = dim0
|
97 |
+
self.dim1 = dim1
|
98 |
+
|
99 |
+
def forward(self, x):
|
100 |
+
x = x.transpose(self.dim0, self.dim1).contiguous()
|
101 |
+
return x
|
102 |
+
|
103 |
+
|
104 |
+
def forward_vit(pretrained, x):
|
105 |
+
b, c, h, w = x.shape
|
106 |
+
|
107 |
+
glob = pretrained.model.forward_flex(x)
|
108 |
+
|
109 |
+
layer_1 = pretrained.activations["1"]
|
110 |
+
layer_2 = pretrained.activations["2"]
|
111 |
+
layer_3 = pretrained.activations["3"]
|
112 |
+
layer_4 = pretrained.activations["4"]
|
113 |
+
|
114 |
+
layer_1 = pretrained.act_postprocess1[0:2](layer_1)
|
115 |
+
layer_2 = pretrained.act_postprocess2[0:2](layer_2)
|
116 |
+
layer_3 = pretrained.act_postprocess3[0:2](layer_3)
|
117 |
+
layer_4 = pretrained.act_postprocess4[0:2](layer_4)
|
118 |
+
|
119 |
+
unflatten = nn.Sequential(
|
120 |
+
nn.Unflatten(
|
121 |
+
2,
|
122 |
+
torch.Size(
|
123 |
+
[
|
124 |
+
h // pretrained.model.patch_size[1],
|
125 |
+
w // pretrained.model.patch_size[0],
|
126 |
+
]
|
127 |
+
),
|
128 |
+
)
|
129 |
+
)
|
130 |
+
|
131 |
+
if layer_1.ndim == 3:
|
132 |
+
layer_1 = unflatten(layer_1)
|
133 |
+
if layer_2.ndim == 3:
|
134 |
+
layer_2 = unflatten(layer_2)
|
135 |
+
if layer_3.ndim == 3:
|
136 |
+
layer_3 = unflatten(layer_3)
|
137 |
+
if layer_4.ndim == 3:
|
138 |
+
layer_4 = unflatten(layer_4)
|
139 |
+
|
140 |
+
layer_1 = pretrained.act_postprocess1[3 : len(pretrained.act_postprocess1)](layer_1)
|
141 |
+
layer_2 = pretrained.act_postprocess2[3 : len(pretrained.act_postprocess2)](layer_2)
|
142 |
+
layer_3 = pretrained.act_postprocess3[3 : len(pretrained.act_postprocess3)](layer_3)
|
143 |
+
layer_4 = pretrained.act_postprocess4[3 : len(pretrained.act_postprocess4)](layer_4)
|
144 |
+
|
145 |
+
return layer_1, layer_2, layer_3, layer_4
|
146 |
+
|
147 |
+
|
148 |
+
def _resize_pos_embed(self, posemb, gs_h, gs_w):
|
149 |
+
posemb_tok, posemb_grid = (
|
150 |
+
posemb[:, : self.start_index],
|
151 |
+
posemb[0, self.start_index :],
|
152 |
+
)
|
153 |
+
|
154 |
+
gs_old = int(math.sqrt(len(posemb_grid)))
|
155 |
+
|
156 |
+
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
|
157 |
+
posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear")
|
158 |
+
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1)
|
159 |
+
|
160 |
+
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
|
161 |
+
|
162 |
+
return posemb
|
163 |
+
|
164 |
+
|
165 |
+
def forward_flex(self, x):
|
166 |
+
b, c, h, w = x.shape
|
167 |
+
|
168 |
+
pos_embed = self._resize_pos_embed(
|
169 |
+
self.pos_embed, h // self.patch_size[1], w // self.patch_size[0]
|
170 |
+
)
|
171 |
+
|
172 |
+
B = x.shape[0]
|
173 |
+
|
174 |
+
if hasattr(self.patch_embed, "backbone"):
|
175 |
+
x = self.patch_embed.backbone(x)
|
176 |
+
if isinstance(x, (list, tuple)):
|
177 |
+
x = x[-1] # last feature if backbone outputs list/tuple of features
|
178 |
+
|
179 |
+
x = self.patch_embed.proj(x).flatten(2).transpose(1, 2).contiguous()
|
180 |
+
|
181 |
+
if getattr(self, "dist_token", None) is not None:
|
182 |
+
cls_tokens = self.cls_token.expand(
|
183 |
+
B, -1, -1
|
184 |
+
) # stole cls_tokens impl from Phil Wang, thanks
|
185 |
+
dist_token = self.dist_token.expand(B, -1, -1)
|
186 |
+
x = torch.cat((cls_tokens, dist_token, x), dim=1)
|
187 |
+
else:
|
188 |
+
cls_tokens = self.cls_token.expand(
|
189 |
+
B, -1, -1
|
190 |
+
) # stole cls_tokens impl from Phil Wang, thanks
|
191 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
192 |
+
|
193 |
+
x = x + pos_embed
|
194 |
+
x = self.pos_drop(x)
|
195 |
+
|
196 |
+
for blk in self.blocks:
|
197 |
+
x = blk(x)
|
198 |
+
|
199 |
+
x = self.norm(x)
|
200 |
+
|
201 |
+
return x
|
202 |
+
|
203 |
+
|
204 |
+
def get_readout_oper(vit_features, features, use_readout, start_index=1):
|
205 |
+
if use_readout == "ignore":
|
206 |
+
readout_oper = [Slice(start_index)] * len(features)
|
207 |
+
elif use_readout == "add":
|
208 |
+
readout_oper = [AddReadout(start_index)] * len(features)
|
209 |
+
elif use_readout == "project":
|
210 |
+
readout_oper = [
|
211 |
+
ProjectReadout(vit_features, start_index) for out_feat in features
|
212 |
+
]
|
213 |
+
else:
|
214 |
+
assert (
|
215 |
+
False
|
216 |
+
), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'"
|
217 |
+
|
218 |
+
return readout_oper
|
219 |
+
|
220 |
+
|
221 |
+
def _make_vit_b16_backbone(
|
222 |
+
model,
|
223 |
+
features=[96, 192, 384, 768],
|
224 |
+
size=[384, 384],
|
225 |
+
hooks=[2, 5, 8, 11],
|
226 |
+
vit_features=768,
|
227 |
+
use_readout="ignore",
|
228 |
+
start_index=1,
|
229 |
+
enable_attention_hooks=False,
|
230 |
+
):
|
231 |
+
pretrained = nn.Module()
|
232 |
+
|
233 |
+
pretrained.model = model
|
234 |
+
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
|
235 |
+
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
|
236 |
+
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
|
237 |
+
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
|
238 |
+
|
239 |
+
pretrained.activations = activations
|
240 |
+
|
241 |
+
if enable_attention_hooks:
|
242 |
+
pretrained.model.blocks[hooks[0]].attn.register_forward_hook(
|
243 |
+
get_attention("attn_1")
|
244 |
+
)
|
245 |
+
pretrained.model.blocks[hooks[1]].attn.register_forward_hook(
|
246 |
+
get_attention("attn_2")
|
247 |
+
)
|
248 |
+
pretrained.model.blocks[hooks[2]].attn.register_forward_hook(
|
249 |
+
get_attention("attn_3")
|
250 |
+
)
|
251 |
+
pretrained.model.blocks[hooks[3]].attn.register_forward_hook(
|
252 |
+
get_attention("attn_4")
|
253 |
+
)
|
254 |
+
pretrained.attention = attention
|
255 |
+
|
256 |
+
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
|
257 |
+
|
258 |
+
# 32, 48, 136, 384
|
259 |
+
pretrained.act_postprocess1 = nn.Sequential(
|
260 |
+
readout_oper[0],
|
261 |
+
Transpose(1, 2),
|
262 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
263 |
+
nn.Conv2d(
|
264 |
+
in_channels=vit_features,
|
265 |
+
out_channels=features[0],
|
266 |
+
kernel_size=1,
|
267 |
+
stride=1,
|
268 |
+
padding=0,
|
269 |
+
),
|
270 |
+
nn.ConvTranspose2d(
|
271 |
+
in_channels=features[0],
|
272 |
+
out_channels=features[0],
|
273 |
+
kernel_size=4,
|
274 |
+
stride=4,
|
275 |
+
padding=0,
|
276 |
+
bias=True,
|
277 |
+
dilation=1,
|
278 |
+
groups=1,
|
279 |
+
),
|
280 |
+
)
|
281 |
+
|
282 |
+
pretrained.act_postprocess2 = nn.Sequential(
|
283 |
+
readout_oper[1],
|
284 |
+
Transpose(1, 2),
|
285 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
286 |
+
nn.Conv2d(
|
287 |
+
in_channels=vit_features,
|
288 |
+
out_channels=features[1],
|
289 |
+
kernel_size=1,
|
290 |
+
stride=1,
|
291 |
+
padding=0,
|
292 |
+
),
|
293 |
+
nn.ConvTranspose2d(
|
294 |
+
in_channels=features[1],
|
295 |
+
out_channels=features[1],
|
296 |
+
kernel_size=2,
|
297 |
+
stride=2,
|
298 |
+
padding=0,
|
299 |
+
bias=True,
|
300 |
+
dilation=1,
|
301 |
+
groups=1,
|
302 |
+
),
|
303 |
+
)
|
304 |
+
|
305 |
+
pretrained.act_postprocess3 = nn.Sequential(
|
306 |
+
readout_oper[2],
|
307 |
+
Transpose(1, 2),
|
308 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
309 |
+
nn.Conv2d(
|
310 |
+
in_channels=vit_features,
|
311 |
+
out_channels=features[2],
|
312 |
+
kernel_size=1,
|
313 |
+
stride=1,
|
314 |
+
padding=0,
|
315 |
+
),
|
316 |
+
)
|
317 |
+
|
318 |
+
pretrained.act_postprocess4 = nn.Sequential(
|
319 |
+
readout_oper[3],
|
320 |
+
Transpose(1, 2),
|
321 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
322 |
+
nn.Conv2d(
|
323 |
+
in_channels=vit_features,
|
324 |
+
out_channels=features[3],
|
325 |
+
kernel_size=1,
|
326 |
+
stride=1,
|
327 |
+
padding=0,
|
328 |
+
),
|
329 |
+
nn.Conv2d(
|
330 |
+
in_channels=features[3],
|
331 |
+
out_channels=features[3],
|
332 |
+
kernel_size=3,
|
333 |
+
stride=2,
|
334 |
+
padding=1,
|
335 |
+
),
|
336 |
+
)
|
337 |
+
|
338 |
+
pretrained.model.start_index = start_index
|
339 |
+
pretrained.model.patch_size = [16, 16]
|
340 |
+
|
341 |
+
# We inject this function into the VisionTransformer instances so that
|
342 |
+
# we can use it with interpolated position embeddings without modifying the library source.
|
343 |
+
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
|
344 |
+
pretrained.model._resize_pos_embed = types.MethodType(
|
345 |
+
_resize_pos_embed, pretrained.model
|
346 |
+
)
|
347 |
+
|
348 |
+
return pretrained
|
349 |
+
|
350 |
+
|
351 |
+
def _make_vit_b_rn50_backbone(
|
352 |
+
model,
|
353 |
+
features=[256, 512, 768, 768],
|
354 |
+
size=[384, 384],
|
355 |
+
hooks=[0, 1, 8, 11],
|
356 |
+
vit_features=768,
|
357 |
+
use_vit_only=False,
|
358 |
+
use_readout="ignore",
|
359 |
+
start_index=1,
|
360 |
+
enable_attention_hooks=False,
|
361 |
+
use_layer_scale=False,
|
362 |
+
):
|
363 |
+
pretrained = nn.Module()
|
364 |
+
|
365 |
+
###
|
366 |
+
if use_layer_scale:
|
367 |
+
from timm.models.vision_transformer import LayerScale
|
368 |
+
for i, block in enumerate (model.blocks) :
|
369 |
+
block.ls1 = LayerScale(vit_features)
|
370 |
+
block.ls2 = LayerScale(vit_features)
|
371 |
+
|
372 |
+
pretrained.model = model
|
373 |
+
|
374 |
+
if use_vit_only == True:
|
375 |
+
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
|
376 |
+
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
|
377 |
+
else:
|
378 |
+
pretrained.model.patch_embed.backbone.stages[0].register_forward_hook(
|
379 |
+
get_activation("1")
|
380 |
+
)
|
381 |
+
pretrained.model.patch_embed.backbone.stages[1].register_forward_hook(
|
382 |
+
get_activation("2")
|
383 |
+
)
|
384 |
+
|
385 |
+
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
|
386 |
+
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
|
387 |
+
|
388 |
+
if enable_attention_hooks:
|
389 |
+
pretrained.model.blocks[2].attn.register_forward_hook(get_attention("attn_1"))
|
390 |
+
pretrained.model.blocks[5].attn.register_forward_hook(get_attention("attn_2"))
|
391 |
+
pretrained.model.blocks[8].attn.register_forward_hook(get_attention("attn_3"))
|
392 |
+
pretrained.model.blocks[11].attn.register_forward_hook(get_attention("attn_4"))
|
393 |
+
pretrained.attention = attention
|
394 |
+
|
395 |
+
pretrained.activations = activations
|
396 |
+
|
397 |
+
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
|
398 |
+
|
399 |
+
if use_vit_only == True:
|
400 |
+
pretrained.act_postprocess1 = nn.Sequential(
|
401 |
+
readout_oper[0],
|
402 |
+
Transpose(1, 2),
|
403 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
404 |
+
nn.Conv2d(
|
405 |
+
in_channels=vit_features,
|
406 |
+
out_channels=features[0],
|
407 |
+
kernel_size=1,
|
408 |
+
stride=1,
|
409 |
+
padding=0,
|
410 |
+
),
|
411 |
+
nn.ConvTranspose2d(
|
412 |
+
in_channels=features[0],
|
413 |
+
out_channels=features[0],
|
414 |
+
kernel_size=4,
|
415 |
+
stride=4,
|
416 |
+
padding=0,
|
417 |
+
bias=True,
|
418 |
+
dilation=1,
|
419 |
+
groups=1,
|
420 |
+
),
|
421 |
+
)
|
422 |
+
|
423 |
+
pretrained.act_postprocess2 = nn.Sequential(
|
424 |
+
readout_oper[1],
|
425 |
+
Transpose(1, 2),
|
426 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
427 |
+
nn.Conv2d(
|
428 |
+
in_channels=vit_features,
|
429 |
+
out_channels=features[1],
|
430 |
+
kernel_size=1,
|
431 |
+
stride=1,
|
432 |
+
padding=0,
|
433 |
+
),
|
434 |
+
nn.ConvTranspose2d(
|
435 |
+
in_channels=features[1],
|
436 |
+
out_channels=features[1],
|
437 |
+
kernel_size=2,
|
438 |
+
stride=2,
|
439 |
+
padding=0,
|
440 |
+
bias=True,
|
441 |
+
dilation=1,
|
442 |
+
groups=1,
|
443 |
+
),
|
444 |
+
)
|
445 |
+
else:
|
446 |
+
pretrained.act_postprocess1 = nn.Sequential(
|
447 |
+
nn.Identity(), nn.Identity(), nn.Identity()
|
448 |
+
)
|
449 |
+
pretrained.act_postprocess2 = nn.Sequential(
|
450 |
+
nn.Identity(), nn.Identity(), nn.Identity()
|
451 |
+
)
|
452 |
+
|
453 |
+
pretrained.act_postprocess3 = nn.Sequential(
|
454 |
+
readout_oper[2],
|
455 |
+
Transpose(1, 2),
|
456 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
457 |
+
nn.Conv2d(
|
458 |
+
in_channels=vit_features,
|
459 |
+
out_channels=features[2],
|
460 |
+
kernel_size=1,
|
461 |
+
stride=1,
|
462 |
+
padding=0,
|
463 |
+
),
|
464 |
+
)
|
465 |
+
|
466 |
+
pretrained.act_postprocess4 = nn.Sequential(
|
467 |
+
readout_oper[3],
|
468 |
+
Transpose(1, 2),
|
469 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
470 |
+
nn.Conv2d(
|
471 |
+
in_channels=vit_features,
|
472 |
+
out_channels=features[3],
|
473 |
+
kernel_size=1,
|
474 |
+
stride=1,
|
475 |
+
padding=0,
|
476 |
+
),
|
477 |
+
nn.Conv2d(
|
478 |
+
in_channels=features[3],
|
479 |
+
out_channels=features[3],
|
480 |
+
kernel_size=3,
|
481 |
+
stride=2,
|
482 |
+
padding=1,
|
483 |
+
),
|
484 |
+
)
|
485 |
+
|
486 |
+
pretrained.model.start_index = start_index
|
487 |
+
pretrained.model.patch_size = [16, 16]
|
488 |
+
|
489 |
+
# We inject this function into the VisionTransformer instances so that
|
490 |
+
# we can use it with interpolated position embeddings without modifying the library source.
|
491 |
+
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
|
492 |
+
|
493 |
+
# We inject this function into the VisionTransformer instances so that
|
494 |
+
# we can use it with interpolated position embeddings without modifying the library source.
|
495 |
+
pretrained.model._resize_pos_embed = types.MethodType(
|
496 |
+
_resize_pos_embed, pretrained.model
|
497 |
+
)
|
498 |
+
|
499 |
+
return pretrained
|
500 |
+
|
501 |
+
|
502 |
+
def _make_pretrained_vitb_rn50_384(
|
503 |
+
pretrained,
|
504 |
+
use_readout="ignore",
|
505 |
+
hooks=None,
|
506 |
+
use_vit_only=False,
|
507 |
+
enable_attention_hooks=False,
|
508 |
+
use_layer_scale=False,
|
509 |
+
):
|
510 |
+
model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained)
|
511 |
+
|
512 |
+
hooks = [0, 1, 8, 11] if hooks == None else hooks
|
513 |
+
return _make_vit_b_rn50_backbone(
|
514 |
+
model,
|
515 |
+
features=[256, 512, 768, 768],
|
516 |
+
size=[384, 384],
|
517 |
+
hooks=hooks,
|
518 |
+
use_vit_only=use_vit_only,
|
519 |
+
use_readout=use_readout,
|
520 |
+
enable_attention_hooks=enable_attention_hooks,
|
521 |
+
use_layer_scale=use_layer_scale,
|
522 |
+
)
|
523 |
+
|
524 |
+
|
525 |
+
def _make_pretrained_vitl16_384(
|
526 |
+
pretrained, use_readout="ignore", hooks=None, enable_attention_hooks=False
|
527 |
+
):
|
528 |
+
model = timm.create_model("vit_large_patch16_384", pretrained=pretrained)
|
529 |
+
|
530 |
+
hooks = [5, 11, 17, 23] if hooks == None else hooks
|
531 |
+
return _make_vit_b16_backbone(
|
532 |
+
model,
|
533 |
+
features=[256, 512, 1024, 1024],
|
534 |
+
hooks=hooks,
|
535 |
+
vit_features=1024,
|
536 |
+
use_readout=use_readout,
|
537 |
+
enable_attention_hooks=enable_attention_hooks,
|
538 |
+
)
|
539 |
+
|
540 |
+
|
541 |
+
def _make_pretrained_vitb16_384(
|
542 |
+
pretrained, use_readout="ignore", hooks=None, enable_attention_hooks=False
|
543 |
+
):
|
544 |
+
model = timm.create_model("vit_base_patch16_384", pretrained=pretrained)
|
545 |
+
|
546 |
+
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
547 |
+
return _make_vit_b16_backbone(
|
548 |
+
model,
|
549 |
+
features=[96, 192, 384, 768],
|
550 |
+
hooks=hooks,
|
551 |
+
use_readout=use_readout,
|
552 |
+
enable_attention_hooks=enable_attention_hooks,
|
553 |
+
)
|
554 |
+
|
555 |
+
|
556 |
+
def _make_pretrained_deitb16_384(
|
557 |
+
pretrained, use_readout="ignore", hooks=None, enable_attention_hooks=False
|
558 |
+
):
|
559 |
+
model = timm.create_model("vit_deit_base_patch16_384", pretrained=pretrained)
|
560 |
+
|
561 |
+
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
562 |
+
return _make_vit_b16_backbone(
|
563 |
+
model,
|
564 |
+
features=[96, 192, 384, 768],
|
565 |
+
hooks=hooks,
|
566 |
+
use_readout=use_readout,
|
567 |
+
enable_attention_hooks=enable_attention_hooks,
|
568 |
+
)
|
569 |
+
|
570 |
+
|
571 |
+
def _make_pretrained_deitb16_distil_384(
|
572 |
+
pretrained, use_readout="ignore", hooks=None, enable_attention_hooks=False
|
573 |
+
):
|
574 |
+
model = timm.create_model(
|
575 |
+
"vit_deit_base_distilled_patch16_384", pretrained=pretrained
|
576 |
+
)
|
577 |
+
|
578 |
+
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
579 |
+
return _make_vit_b16_backbone(
|
580 |
+
model,
|
581 |
+
features=[96, 192, 384, 768],
|
582 |
+
hooks=hooks,
|
583 |
+
use_readout=use_readout,
|
584 |
+
start_index=2,
|
585 |
+
enable_attention_hooks=enable_attention_hooks,
|
586 |
+
)
|
scalelsd/ssl/backbones/multi_task_head.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
class MultitaskHead(nn.Module):
|
4 |
+
def __init__(self, input_channels, num_class, head_size):
|
5 |
+
super(MultitaskHead, self).__init__()
|
6 |
+
|
7 |
+
m = int(input_channels / 4)
|
8 |
+
heads = []
|
9 |
+
for output_channels in sum(head_size, []):
|
10 |
+
heads.append(
|
11 |
+
nn.Sequential(
|
12 |
+
nn.Conv2d(input_channels, m, kernel_size=3, padding=1),
|
13 |
+
nn.ReLU(inplace=True),
|
14 |
+
nn.Conv2d(m, output_channels, kernel_size=1),
|
15 |
+
)
|
16 |
+
)
|
17 |
+
self.heads = nn.ModuleList(heads)
|
18 |
+
assert num_class == sum(sum(head_size, []))
|
19 |
+
|
20 |
+
def forward(self, x):
|
21 |
+
# import pdb;pdb.set_trace()
|
22 |
+
return torch.cat([head(x) for head in self.heads], dim=1)
|
23 |
+
|
24 |
+
|
25 |
+
class AngleDistanceHead(nn.Module):
|
26 |
+
def __init__(self, input_channels, num_class, head_size):
|
27 |
+
super(AngleDistanceHead, self).__init__()
|
28 |
+
|
29 |
+
m = int(input_channels/4)
|
30 |
+
|
31 |
+
heads = []
|
32 |
+
for output_channels in sum(head_size, []):
|
33 |
+
if output_channels != 2:
|
34 |
+
heads.append(
|
35 |
+
nn.Sequential(
|
36 |
+
nn.Conv2d(input_channels, m, kernel_size=3, padding=1),
|
37 |
+
nn.ReLU(inplace=True),
|
38 |
+
nn.Conv2d(m, output_channels, kernel_size=1),
|
39 |
+
)
|
40 |
+
)
|
41 |
+
else:
|
42 |
+
heads.append(
|
43 |
+
nn.Sequential(
|
44 |
+
nn.Conv2d(input_channels, m, kernel_size=3, padding=1),
|
45 |
+
nn.ReLU(inplace=True),
|
46 |
+
CosineSineLayer(m)
|
47 |
+
)
|
48 |
+
)
|
49 |
+
self.heads = nn.ModuleList(heads)
|
50 |
+
assert num_class == sum(sum(head_size, []))
|
51 |
+
def forward(self, x):
|
52 |
+
return torch.cat([head(x) for head in self.heads], dim=1)
|
scalelsd/ssl/config/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .project_config import Config
|
2 |
+
from .utils import *
|
scalelsd/ssl/config/dataset/hpatches_dataset.yaml
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### General dataset parameters
|
2 |
+
dataset_name: "hpatches"
|
3 |
+
add_augmentation_to_all_splits: False
|
4 |
+
gray_scale: True
|
5 |
+
# Ground truth source ('official' or path to the exported h5 dataset.)
|
6 |
+
# gt_source_train: "" # Fill with your own export file
|
7 |
+
# gt_source_test: "" # Fill with your own export file
|
8 |
+
# Return type: (1) single (to train the detector only)
|
9 |
+
# or (2) paired_desc (to train the detector + descriptor)
|
10 |
+
return_type: "single"
|
11 |
+
random_seed: 0
|
12 |
+
|
13 |
+
### Descriptor training parameters
|
14 |
+
# Number of points extracted per line
|
15 |
+
max_num_samples: 10
|
16 |
+
# Max number of training line points extracted in the whole image
|
17 |
+
max_pts: 1000
|
18 |
+
# Min distance between two points on a line (in pixels)
|
19 |
+
min_dist_pts: 10
|
20 |
+
# Small jittering of the sampled points during training
|
21 |
+
jittering: 0
|
22 |
+
|
23 |
+
alteration: "all"
|
24 |
+
max_side: 1200
|
25 |
+
|
26 |
+
### Data preprocessing configuration
|
27 |
+
preprocessing:
|
28 |
+
resize: [512, 512]
|
29 |
+
blur_size: 11
|
30 |
+
augmentation:
|
31 |
+
random_scaling:
|
32 |
+
enable: True
|
33 |
+
range: [0.7, 1.5]
|
34 |
+
photometric:
|
35 |
+
enable: true
|
36 |
+
primitives: ['random_brightness', 'random_contrast',
|
37 |
+
'additive_speckle_noise', 'additive_gaussian_noise',
|
38 |
+
'additive_shade', 'motion_blur' ]
|
39 |
+
params:
|
40 |
+
random_brightness: {brightness: 0.2}
|
41 |
+
random_contrast: {contrast: [0.3, 1.5]}
|
42 |
+
additive_gaussian_noise: {stddev_range: [0, 10]}
|
43 |
+
additive_speckle_noise: {prob_range: [0, 0.0035]}
|
44 |
+
additive_shade:
|
45 |
+
transparency_range: [-0.5, 0.5]
|
46 |
+
kernel_size_range: [100, 150]
|
47 |
+
motion_blur: {max_kernel_size: 3}
|
48 |
+
random_order: True
|
49 |
+
homographic:
|
50 |
+
enable: true
|
51 |
+
params:
|
52 |
+
translation: true
|
53 |
+
rotation: true
|
54 |
+
scaling: true
|
55 |
+
perspective: true
|
56 |
+
scaling_amplitude: 0.2
|
57 |
+
perspective_amplitude_x: 0.2
|
58 |
+
perspective_amplitude_y: 0.2
|
59 |
+
patch_ratio: 0.85
|
60 |
+
max_angle: 1.57
|
61 |
+
allow_artifacts: true
|
62 |
+
valid_border_margin: 3
|
63 |
+
|
64 |
+
## Homography adaptation configuration
|
65 |
+
homography_adaptation:
|
66 |
+
num_iter: 10
|
67 |
+
valid_border_margin: 3
|
68 |
+
min_counts: 3
|
69 |
+
homographies:
|
70 |
+
translation: true
|
71 |
+
rotation: true
|
72 |
+
scaling: true
|
73 |
+
perspective: true
|
74 |
+
scaling_amplitude: 0.2
|
75 |
+
perspective_amplitude_x: 0.2
|
76 |
+
perspective_amplitude_y: 0.2
|
77 |
+
allow_artifacts: true
|
78 |
+
patch_ratio: 0.85
|
79 |
+
|
80 |
+
data:
|
81 |
+
name: hpatches
|
82 |
+
dataset_dir: HPatches_sequences
|
83 |
+
alteration: all
|
84 |
+
max_side: 1200
|
85 |
+
batch_size: 1
|
86 |
+
num_workers: 4
|
87 |
+
model:
|
88 |
+
name: deeplsd
|
89 |
+
tiny: False
|
90 |
+
sharpen: True
|
91 |
+
line_neighborhood: 5
|
92 |
+
loss_weights:
|
93 |
+
df: 1.
|
94 |
+
angle: 1.
|
95 |
+
detect_lines: True
|
96 |
+
multiscale: False
|
97 |
+
scale_factors: [1., 1.5]
|
98 |
+
line_detection_params:
|
99 |
+
grad_nfa: True
|
100 |
+
merge: False
|
101 |
+
optimize: False
|
102 |
+
use_vps: False
|
103 |
+
optimize_vps: False
|
104 |
+
filtering: True
|
105 |
+
grad_thresh: 3
|
scalelsd/ssl/config/dataset/nyu_dataset.yaml
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### General dataset parameters
|
2 |
+
dataset_name: "nyu"
|
3 |
+
add_augmentation_to_all_splits: False
|
4 |
+
gray_scale: True
|
5 |
+
# Ground truth source ('official' or path to the exported h5 dataset.)
|
6 |
+
# gt_source_train: "" # Fill with your own export file
|
7 |
+
# gt_source_test: "" # Fill with your own export file
|
8 |
+
# Return type: (1) single (to train the detector only)
|
9 |
+
# or (2) paired_desc (to train the detector + descriptor)
|
10 |
+
return_type: "single"
|
11 |
+
random_seed: 0
|
12 |
+
|
13 |
+
val_size: 49
|
14 |
+
|
15 |
+
### Descriptor training parameters
|
16 |
+
# Number of points extracted per line
|
17 |
+
max_num_samples: 10
|
18 |
+
# Max number of training line points extracted in the whole image
|
19 |
+
max_pts: 1000
|
20 |
+
# Min distance between two points on a line (in pixels)
|
21 |
+
min_dist_pts: 10
|
22 |
+
# Small jittering of the sampled points during training
|
23 |
+
jittering: 0
|
24 |
+
|
25 |
+
### Data preprocessing configuration
|
26 |
+
preprocessing:
|
27 |
+
resize: [512, 512]
|
28 |
+
blur_size: 11
|
29 |
+
augmentation:
|
30 |
+
random_scaling:
|
31 |
+
enable: True
|
32 |
+
range: [0.7, 1.5]
|
33 |
+
photometric:
|
34 |
+
enable: true
|
35 |
+
primitives: ['random_brightness', 'random_contrast',
|
36 |
+
'additive_speckle_noise', 'additive_gaussian_noise',
|
37 |
+
'additive_shade', 'motion_blur' ]
|
38 |
+
params:
|
39 |
+
random_brightness: {brightness: 0.2}
|
40 |
+
random_contrast: {contrast: [0.3, 1.5]}
|
41 |
+
additive_gaussian_noise: {stddev_range: [0, 10]}
|
42 |
+
additive_speckle_noise: {prob_range: [0, 0.0035]}
|
43 |
+
additive_shade:
|
44 |
+
transparency_range: [-0.5, 0.5]
|
45 |
+
kernel_size_range: [100, 150]
|
46 |
+
motion_blur: {max_kernel_size: 3}
|
47 |
+
random_order: True
|
48 |
+
homographic:
|
49 |
+
enable: true
|
50 |
+
params:
|
51 |
+
translation: true
|
52 |
+
rotation: true
|
53 |
+
scaling: true
|
54 |
+
perspective: true
|
55 |
+
scaling_amplitude: 0.2
|
56 |
+
perspective_amplitude_x: 0.2
|
57 |
+
perspective_amplitude_y: 0.2
|
58 |
+
patch_ratio: 0.85
|
59 |
+
max_angle: 1.57
|
60 |
+
allow_artifacts: true
|
61 |
+
valid_border_margin: 3
|
62 |
+
|
63 |
+
## Homography adaptation configuration
|
64 |
+
homography_adaptation:
|
65 |
+
num_iter: 10
|
66 |
+
valid_border_margin: 3
|
67 |
+
min_counts: 3
|
68 |
+
homographies:
|
69 |
+
translation: true
|
70 |
+
rotation: true
|
71 |
+
scaling: true
|
72 |
+
perspective: true
|
73 |
+
scaling_amplitude: 0.2
|
74 |
+
perspective_amplitude_x: 0.2
|
75 |
+
perspective_amplitude_y: 0.2
|
76 |
+
allow_artifacts: true
|
77 |
+
patch_ratio: 0.85
|
scalelsd/ssl/config/dataset/official_yorkurban_dataset.yaml
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### General dataset parameters
|
2 |
+
dataset_name: "official_yorkurban"
|
3 |
+
add_augmentation_to_all_splits: False
|
4 |
+
gray_scale: True
|
5 |
+
# Ground truth source ('official' or path to the exported h5 dataset.)
|
6 |
+
# gt_source_train: "" # Fill with your own export file
|
7 |
+
# gt_source_test: "" # Fill with your own export file
|
8 |
+
# Return type: (1) single (to train the detector only)
|
9 |
+
# or (2) paired_desc (to train the detector + descriptor)
|
10 |
+
return_type: "single"
|
11 |
+
random_seed: 0
|
12 |
+
|
13 |
+
### Descriptor training parameters
|
14 |
+
# Number of points extracted per line
|
15 |
+
max_num_samples: 10
|
16 |
+
# Max number of training line points extracted in the whole image
|
17 |
+
max_pts: 1000
|
18 |
+
# Min distance between two points on a line (in pixels)
|
19 |
+
min_dist_pts: 10
|
20 |
+
# Small jittering of the sampled points during training
|
21 |
+
jittering: 0
|
22 |
+
|
23 |
+
### Data preprocessing configuration
|
24 |
+
preprocessing:
|
25 |
+
resize: [512, 512]
|
26 |
+
blur_size: 11
|
27 |
+
augmentation:
|
28 |
+
random_scaling:
|
29 |
+
enable: True
|
30 |
+
range: [0.7, 1.5]
|
31 |
+
photometric:
|
32 |
+
enable: true
|
33 |
+
primitives: ['random_brightness', 'random_contrast',
|
34 |
+
'additive_speckle_noise', 'additive_gaussian_noise',
|
35 |
+
'additive_shade', 'motion_blur' ]
|
36 |
+
params:
|
37 |
+
random_brightness: {brightness: 0.2}
|
38 |
+
random_contrast: {contrast: [0.3, 1.5]}
|
39 |
+
additive_gaussian_noise: {stddev_range: [0, 10]}
|
40 |
+
additive_speckle_noise: {prob_range: [0, 0.0035]}
|
41 |
+
additive_shade:
|
42 |
+
transparency_range: [-0.5, 0.5]
|
43 |
+
kernel_size_range: [100, 150]
|
44 |
+
motion_blur: {max_kernel_size: 3}
|
45 |
+
random_order: True
|
46 |
+
homographic:
|
47 |
+
enable: true
|
48 |
+
params:
|
49 |
+
translation: true
|
50 |
+
rotation: true
|
51 |
+
scaling: true
|
52 |
+
perspective: true
|
53 |
+
scaling_amplitude: 0.2
|
54 |
+
perspective_amplitude_x: 0.2
|
55 |
+
perspective_amplitude_y: 0.2
|
56 |
+
patch_ratio: 0.85
|
57 |
+
max_angle: 1.57
|
58 |
+
allow_artifacts: true
|
59 |
+
valid_border_margin: 3
|
60 |
+
|
61 |
+
## Homography adaptation configuration
|
62 |
+
homography_adaptation:
|
63 |
+
num_iter: 10
|
64 |
+
valid_border_margin: 3
|
65 |
+
min_counts: 3
|
66 |
+
homographies:
|
67 |
+
translation: true
|
68 |
+
rotation: true
|
69 |
+
scaling: true
|
70 |
+
perspective: true
|
71 |
+
scaling_amplitude: 0.2
|
72 |
+
perspective_amplitude_x: 0.2
|
73 |
+
perspective_amplitude_y: 0.2
|
74 |
+
allow_artifacts: true
|
75 |
+
patch_ratio: 0.85
|
scalelsd/ssl/config/dataset/rdnim_dataset.yaml
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### General dataset parameters
|
2 |
+
dataset_name: "rdnim"
|
3 |
+
add_augmentation_to_all_splits: False
|
4 |
+
gray_scale: True
|
5 |
+
# Ground truth source ('official' or path to the exported h5 dataset.)
|
6 |
+
# gt_source_train: "" # Fill with your own export file
|
7 |
+
# gt_source_test: "" # Fill with your own export file
|
8 |
+
# Return type: (1) single (to train the detector only)
|
9 |
+
# or (2) paired_desc (to train the detector + descriptor)
|
10 |
+
return_type: "single"
|
11 |
+
random_seed: 0
|
12 |
+
|
13 |
+
### Descriptor training parameters
|
14 |
+
# Number of points extracted per line
|
15 |
+
max_num_samples: 10
|
16 |
+
# Max number of training line points extracted in the whole image
|
17 |
+
max_pts: 1000
|
18 |
+
# Min distance between two points on a line (in pixels)
|
19 |
+
min_dist_pts: 10
|
20 |
+
# Small jittering of the sampled points during training
|
21 |
+
jittering: 0
|
22 |
+
|
23 |
+
reference: "night"
|
24 |
+
|
25 |
+
### Data preprocessing configuration
|
26 |
+
preprocessing:
|
27 |
+
resize: [512, 512]
|
28 |
+
blur_size: 11
|
29 |
+
augmentation:
|
30 |
+
random_scaling:
|
31 |
+
enable: True
|
32 |
+
range: [0.7, 1.5]
|
33 |
+
photometric:
|
34 |
+
enable: true
|
35 |
+
primitives: ['random_brightness', 'random_contrast',
|
36 |
+
'additive_speckle_noise', 'additive_gaussian_noise',
|
37 |
+
'additive_shade', 'motion_blur' ]
|
38 |
+
params:
|
39 |
+
random_brightness: {brightness: 0.2}
|
40 |
+
random_contrast: {contrast: [0.3, 1.5]}
|
41 |
+
additive_gaussian_noise: {stddev_range: [0, 10]}
|
42 |
+
additive_speckle_noise: {prob_range: [0, 0.0035]}
|
43 |
+
additive_shade:
|
44 |
+
transparency_range: [-0.5, 0.5]
|
45 |
+
kernel_size_range: [100, 150]
|
46 |
+
motion_blur: {max_kernel_size: 3}
|
47 |
+
random_order: True
|
48 |
+
homographic:
|
49 |
+
enable: true
|
50 |
+
params:
|
51 |
+
translation: true
|
52 |
+
rotation: true
|
53 |
+
scaling: true
|
54 |
+
perspective: true
|
55 |
+
scaling_amplitude: 0.2
|
56 |
+
perspective_amplitude_x: 0.2
|
57 |
+
perspective_amplitude_y: 0.2
|
58 |
+
patch_ratio: 0.85
|
59 |
+
max_angle: 1.57
|
60 |
+
allow_artifacts: true
|
61 |
+
valid_border_margin: 3
|
62 |
+
|
63 |
+
## Homography adaptation configuration
|
64 |
+
homography_adaptation:
|
65 |
+
num_iter: 10
|
66 |
+
valid_border_margin: 3
|
67 |
+
min_counts: 3
|
68 |
+
homographies:
|
69 |
+
translation: true
|
70 |
+
rotation: true
|
71 |
+
scaling: true
|
72 |
+
perspective: true
|
73 |
+
scaling_amplitude: 0.2
|
74 |
+
perspective_amplitude_x: 0.2
|
75 |
+
perspective_amplitude_y: 0.2
|
76 |
+
allow_artifacts: true
|
77 |
+
patch_ratio: 0.85
|
scalelsd/ssl/config/dataset/synthetic_dataset-1024.yaml
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### General dataset parameters
|
2 |
+
dataset_name: "synthetic_shape"
|
3 |
+
primitives: "all"
|
4 |
+
add_augmentation_to_all_splits: True
|
5 |
+
test_augmentation_seed: 200
|
6 |
+
# Shape generation configuration
|
7 |
+
generation:
|
8 |
+
# split_sizes: {'train': 20000, 'val': 2000, 'test': 400}
|
9 |
+
split_sizes: {'train': 2000, 'val': 2000, 'test': 400}
|
10 |
+
random_seed: 10
|
11 |
+
image_size: [960, 1280]
|
12 |
+
min_len: 0.0985
|
13 |
+
min_label_len: 0.099
|
14 |
+
params:
|
15 |
+
generate_background:
|
16 |
+
min_kernel_size: 150
|
17 |
+
max_kernel_size: 500
|
18 |
+
min_rad_ratio: 0.02
|
19 |
+
max_rad_ratio: 0.031
|
20 |
+
draw_stripes:
|
21 |
+
transform_params: [0.1, 0.1]
|
22 |
+
draw_multiple_polygons:
|
23 |
+
kernel_boundaries: [50, 100]
|
24 |
+
|
25 |
+
### Data preprocessing configuration.
|
26 |
+
preprocessing:
|
27 |
+
resize: [1024, 1024]
|
28 |
+
blur_size: 11
|
29 |
+
augmentation:
|
30 |
+
photometric:
|
31 |
+
enable: True
|
32 |
+
primitives: 'all'
|
33 |
+
params: {}
|
34 |
+
random_order: True
|
35 |
+
homographic:
|
36 |
+
enable: True
|
37 |
+
params:
|
38 |
+
translation: true
|
39 |
+
rotation: true
|
40 |
+
scaling: true
|
41 |
+
perspective: true
|
42 |
+
scaling_amplitude: 0.2
|
43 |
+
perspective_amplitude_x: 0.2
|
44 |
+
perspective_amplitude_y: 0.2
|
45 |
+
patch_ratio: 0.8
|
46 |
+
max_angle: 1.57
|
47 |
+
allow_artifacts: true
|
48 |
+
translation_overflow: 0.05
|
49 |
+
valid_border_margin: 0
|
scalelsd/ssl/config/dataset/synthetic_dataset-2k.yaml
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### General dataset parameters
|
2 |
+
dataset_name: "synthetic_shape"
|
3 |
+
primitives: "all"
|
4 |
+
add_augmentation_to_all_splits: True
|
5 |
+
test_augmentation_seed: 200
|
6 |
+
alias: 2k
|
7 |
+
# Shape generation configuration
|
8 |
+
generation:
|
9 |
+
# split_sizes: {'train': 20000, 'val': 2000, 'test': 400}
|
10 |
+
split_sizes: {'train': 2000, 'val': 200, 'test': 400}
|
11 |
+
random_seed: 10
|
12 |
+
image_size: [960, 1280]
|
13 |
+
min_len: 0.0985
|
14 |
+
min_label_len: 0.099
|
15 |
+
params:
|
16 |
+
generate_background:
|
17 |
+
min_kernel_size: 150
|
18 |
+
max_kernel_size: 500
|
19 |
+
min_rad_ratio: 0.02
|
20 |
+
max_rad_ratio: 0.031
|
21 |
+
draw_stripes:
|
22 |
+
transform_params: [0.1, 0.1]
|
23 |
+
draw_multiple_polygons:
|
24 |
+
kernel_boundaries: [50, 100]
|
25 |
+
|
26 |
+
### Data preprocessing configuration.
|
27 |
+
preprocessing:
|
28 |
+
resize: [512, 512]
|
29 |
+
blur_size: 11
|
30 |
+
augmentation:
|
31 |
+
photometric:
|
32 |
+
enable: True
|
33 |
+
primitives: 'all'
|
34 |
+
params: {}
|
35 |
+
random_order: True
|
36 |
+
homographic:
|
37 |
+
enable: True
|
38 |
+
params:
|
39 |
+
translation: true
|
40 |
+
rotation: true
|
41 |
+
scaling: true
|
42 |
+
perspective: true
|
43 |
+
scaling_amplitude: 0.2
|
44 |
+
perspective_amplitude_x: 0.2
|
45 |
+
perspective_amplitude_y: 0.2
|
46 |
+
patch_ratio: 0.8
|
47 |
+
max_angle: 1.57
|
48 |
+
allow_artifacts: true
|
49 |
+
translation_overflow: 0.05
|
50 |
+
valid_border_margin: 0
|
scalelsd/ssl/config/dataset/synthetic_dataset-4k.yaml
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### General dataset parameters
|
2 |
+
dataset_name: "synthetic_shape"
|
3 |
+
primitives: "all"
|
4 |
+
add_augmentation_to_all_splits: True
|
5 |
+
test_augmentation_seed: 200
|
6 |
+
alias: 4k
|
7 |
+
# Shape generation configuration
|
8 |
+
generation:
|
9 |
+
# split_sizes: {'train': 20000, 'val': 2000, 'test': 400}
|
10 |
+
split_sizes: {'train': 4000, 'val': 2000, 'test': 400}
|
11 |
+
random_seed: 10
|
12 |
+
image_size: [960, 1280]
|
13 |
+
min_len: 0.0985
|
14 |
+
min_label_len: 0.099
|
15 |
+
params:
|
16 |
+
generate_background:
|
17 |
+
min_kernel_size: 150
|
18 |
+
max_kernel_size: 500
|
19 |
+
min_rad_ratio: 0.02
|
20 |
+
max_rad_ratio: 0.031
|
21 |
+
draw_stripes:
|
22 |
+
transform_params: [0.1, 0.1]
|
23 |
+
draw_multiple_polygons:
|
24 |
+
kernel_boundaries: [50, 100]
|
25 |
+
|
26 |
+
### Data preprocessing configuration.
|
27 |
+
preprocessing:
|
28 |
+
resize: [512, 512]
|
29 |
+
blur_size: 11
|
30 |
+
augmentation:
|
31 |
+
photometric:
|
32 |
+
enable: True
|
33 |
+
primitives: 'all'
|
34 |
+
params: {}
|
35 |
+
random_order: True
|
36 |
+
homographic:
|
37 |
+
enable: True
|
38 |
+
params:
|
39 |
+
translation: true
|
40 |
+
rotation: true
|
41 |
+
scaling: true
|
42 |
+
perspective: true
|
43 |
+
scaling_amplitude: 0.2
|
44 |
+
perspective_amplitude_x: 0.2
|
45 |
+
perspective_amplitude_y: 0.2
|
46 |
+
patch_ratio: 0.8
|
47 |
+
max_angle: 1.57
|
48 |
+
allow_artifacts: true
|
49 |
+
translation_overflow: 0.05
|
50 |
+
valid_border_margin: 0
|
scalelsd/ssl/config/dataset/synthetic_dataset-large.yaml
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### General dataset parameters
|
2 |
+
dataset_name: "synthetic_shape"
|
3 |
+
primitives: "all"
|
4 |
+
add_augmentation_to_all_splits: True
|
5 |
+
test_augmentation_seed: 200
|
6 |
+
alias: "synthetic_shape_large"
|
7 |
+
# Shape generation configuration
|
8 |
+
generation:
|
9 |
+
split_sizes: {'train': 20000, 'val': 2000, 'test': 400}
|
10 |
+
# split_sizes: {'train': 2000, 'val': 2000, 'test': 400}
|
11 |
+
random_seed: 10
|
12 |
+
image_size: [960, 1280]
|
13 |
+
min_len: 0.0985
|
14 |
+
min_label_len: 0.099
|
15 |
+
params:
|
16 |
+
generate_background:
|
17 |
+
min_kernel_size: 150
|
18 |
+
max_kernel_size: 500
|
19 |
+
min_rad_ratio: 0.02
|
20 |
+
max_rad_ratio: 0.031
|
21 |
+
draw_stripes:
|
22 |
+
transform_params: [0.1, 0.1]
|
23 |
+
draw_multiple_polygons:
|
24 |
+
kernel_boundaries: [50, 100]
|
25 |
+
|
26 |
+
### Data preprocessing configuration.
|
27 |
+
preprocessing:
|
28 |
+
resize: [512, 512]
|
29 |
+
blur_size: 11
|
30 |
+
augmentation:
|
31 |
+
photometric:
|
32 |
+
enable: True
|
33 |
+
primitives: 'all'
|
34 |
+
params: {}
|
35 |
+
random_order: True
|
36 |
+
homographic:
|
37 |
+
enable: True
|
38 |
+
params:
|
39 |
+
translation: true
|
40 |
+
rotation: true
|
41 |
+
scaling: true
|
42 |
+
perspective: true
|
43 |
+
scaling_amplitude: 0.2
|
44 |
+
perspective_amplitude_x: 0.2
|
45 |
+
perspective_amplitude_y: 0.2
|
46 |
+
patch_ratio: 0.8
|
47 |
+
max_angle: 1.57
|
48 |
+
allow_artifacts: true
|
49 |
+
translation_overflow: 0.05
|
50 |
+
valid_border_margin: 0
|
scalelsd/ssl/config/dataset/synthetic_dataset.yaml
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### General dataset parameters
|
2 |
+
dataset_name: "synthetic_shape"
|
3 |
+
primitives: "all"
|
4 |
+
add_augmentation_to_all_splits: True
|
5 |
+
test_augmentation_seed: 200
|
6 |
+
# Shape generation configuration
|
7 |
+
generation:
|
8 |
+
# split_sizes: {'train': 20000, 'val': 2000, 'test': 400}
|
9 |
+
# split_sizes: {'train': 2000, 'val': 2000, 'test': 400}
|
10 |
+
split_sizes: {'train': 100, 'val': 100, 'test': 100}
|
11 |
+
random_seed: 10
|
12 |
+
# image_size: [960, 1280]
|
13 |
+
image_size: [1024, 1024]
|
14 |
+
min_len: 0.0985
|
15 |
+
min_label_len: 0.099
|
16 |
+
params:
|
17 |
+
generate_background:
|
18 |
+
min_kernel_size: 150
|
19 |
+
max_kernel_size: 500
|
20 |
+
min_rad_ratio: 0.02
|
21 |
+
max_rad_ratio: 0.031
|
22 |
+
draw_stripes:
|
23 |
+
transform_params: [0.1, 0.1]
|
24 |
+
draw_multiple_polygons:
|
25 |
+
kernel_boundaries: [50, 100]
|
26 |
+
|
27 |
+
### Data preprocessing configuration.
|
28 |
+
preprocessing:
|
29 |
+
resize: [512, 512]
|
30 |
+
blur_size: 11
|
31 |
+
augmentation:
|
32 |
+
photometric:
|
33 |
+
enable: True
|
34 |
+
primitives: 'all'
|
35 |
+
params: {}
|
36 |
+
random_order: True
|
37 |
+
homographic:
|
38 |
+
enable: True
|
39 |
+
params:
|
40 |
+
translation: true
|
41 |
+
rotation: true
|
42 |
+
scaling: true
|
43 |
+
perspective: true
|
44 |
+
scaling_amplitude: 0.2
|
45 |
+
perspective_amplitude_x: 0.2
|
46 |
+
perspective_amplitude_y: 0.2
|
47 |
+
patch_ratio: 0.8
|
48 |
+
max_angle: 1.57
|
49 |
+
allow_artifacts: true
|
50 |
+
translation_overflow: 0.05
|
51 |
+
valid_border_margin: 0
|
scalelsd/ssl/config/dataset/wireframe_official_gt copy.yaml
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dataset_name: "wireframe"
|
2 |
+
add_augmentation_to_all_splits: False
|
3 |
+
gray_scale: True
|
4 |
+
# return_type: "paired_desc"
|
5 |
+
random_seed: 0
|
6 |
+
# Ground truth source (official or path to the epxorted h5 dataset.)
|
7 |
+
gt_source_train: "official"
|
8 |
+
gt_source_test: "official"
|
9 |
+
# Date preprocessing configuration.
|
10 |
+
preprocessing:
|
11 |
+
resize: [512, 512]
|
12 |
+
blur_size: 11
|
13 |
+
augmentation:
|
14 |
+
random_scaling:
|
15 |
+
enable: True
|
16 |
+
range: [0.7, 1.5]
|
17 |
+
photometric:
|
18 |
+
enable: true
|
19 |
+
primitives: ['random_brightness', 'random_contrast',
|
20 |
+
'additive_speckle_noise', 'additive_gaussian_noise',
|
21 |
+
'additive_shade', 'motion_blur' ]
|
22 |
+
params:
|
23 |
+
random_brightness: {brightness: 0.2}
|
24 |
+
random_contrast: {contrast: [0.3, 1.5]}
|
25 |
+
additive_gaussian_noise: {stddev_range: [0, 10]}
|
26 |
+
additive_speckle_noise: {prob_range: [0, 0.0035]}
|
27 |
+
additive_shade:
|
28 |
+
transparency_range: [-0.5, 0.5]
|
29 |
+
kernel_size_range: [100, 150]
|
30 |
+
motion_blur: {max_kernel_size: 3}
|
31 |
+
random_order: True
|
32 |
+
homographic:
|
33 |
+
enable: true
|
34 |
+
params:
|
35 |
+
translation: true
|
36 |
+
rotation: true
|
37 |
+
scaling: true
|
38 |
+
perspective: true
|
39 |
+
scaling_amplitude: 0.2
|
40 |
+
perspective_amplitude_x: 0.2
|
41 |
+
perspective_amplitude_y: 0.2
|
42 |
+
patch_ratio: 0.85
|
43 |
+
max_angle: 1.57
|
44 |
+
allow_artifacts: true
|
45 |
+
valid_border_margin: 3
|
46 |
+
# The homography adaptation configuration
|
47 |
+
homography_adaptation:
|
48 |
+
num_iter: 100
|
49 |
+
aggregation: 'sum'
|
50 |
+
mode: 'ver1'
|
51 |
+
valid_border_margin: 3
|
52 |
+
min_counts: 30
|
53 |
+
homographies:
|
54 |
+
translation: true
|
55 |
+
rotation: true
|
56 |
+
scaling: true
|
57 |
+
perspective: true
|
58 |
+
scaling_amplitude: 0.2
|
59 |
+
perspective_amplitude_x: 0.2
|
60 |
+
perspective_amplitude_y: 0.2
|
61 |
+
allow_artifacts: true
|
62 |
+
patch_ratio: 0.85
|
63 |
+
# Evaluation related config
|
64 |
+
evaluation:
|
65 |
+
repeatability:
|
66 |
+
# Initial random seed used to sample homographic augmentation
|
67 |
+
seed: 200
|
68 |
+
# Parameter used to sample illumination change evaluation set.
|
69 |
+
photometric:
|
70 |
+
enable: False
|
71 |
+
# Parameter used to sample viewpoint change evaluation set.
|
72 |
+
homographic:
|
73 |
+
enable: True
|
74 |
+
num_samples: 2
|
75 |
+
params:
|
76 |
+
translation: true
|
77 |
+
rotation: true
|
78 |
+
scaling: true
|
79 |
+
perspective: true
|
80 |
+
scaling_amplitude: 0.2
|
81 |
+
perspective_amplitude_x: 0.2
|
82 |
+
perspective_amplitude_y: 0.2
|
83 |
+
patch_ratio: 0.85
|
84 |
+
max_angle: 1.57
|
85 |
+
allow_artifacts: true
|
86 |
+
valid_border_margin: 3
|
scalelsd/ssl/config/dataset/wireframe_official_gt.yaml
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dataset_name: "wireframe"
|
2 |
+
add_augmentation_to_all_splits: False
|
3 |
+
gray_scale: True
|
4 |
+
# return_type: "paired_desc"
|
5 |
+
random_seed: 0
|
6 |
+
# Ground truth source (official or path to the epxorted h5 dataset.)
|
7 |
+
gt_source_train: "official"
|
8 |
+
gt_source_test: "official"
|
9 |
+
# Date preprocessing configuration.
|
10 |
+
preprocessing:
|
11 |
+
resize: [512, 512]
|
12 |
+
blur_size: 11
|
13 |
+
augmentation:
|
14 |
+
random_scaling:
|
15 |
+
enable: True
|
16 |
+
range: [0.7, 1.5]
|
17 |
+
photometric:
|
18 |
+
enable: true
|
19 |
+
primitives: ['random_brightness', 'random_contrast',
|
20 |
+
'additive_speckle_noise', 'additive_gaussian_noise',
|
21 |
+
'additive_shade', 'motion_blur' ]
|
22 |
+
params:
|
23 |
+
random_brightness: {brightness: 0.2}
|
24 |
+
random_contrast: {contrast: [0.3, 1.5]}
|
25 |
+
additive_gaussian_noise: {stddev_range: [0, 10]}
|
26 |
+
additive_speckle_noise: {prob_range: [0, 0.0035]}
|
27 |
+
additive_shade:
|
28 |
+
transparency_range: [-0.5, 0.5]
|
29 |
+
kernel_size_range: [100, 150]
|
30 |
+
motion_blur: {max_kernel_size: 3}
|
31 |
+
random_order: True
|
32 |
+
homographic:
|
33 |
+
enable: true
|
34 |
+
params:
|
35 |
+
translation: true
|
36 |
+
rotation: true
|
37 |
+
scaling: true
|
38 |
+
perspective: true
|
39 |
+
scaling_amplitude: 0.2
|
40 |
+
perspective_amplitude_x: 0.2
|
41 |
+
perspective_amplitude_y: 0.2
|
42 |
+
patch_ratio: 0.85
|
43 |
+
max_angle: 1.57
|
44 |
+
allow_artifacts: true
|
45 |
+
valid_border_margin: 3
|
46 |
+
# The homography adaptation configuration
|
47 |
+
homography_adaptation:
|
48 |
+
num_iter: 100
|
49 |
+
aggregation: 'sum'
|
50 |
+
mode: 'ver1'
|
51 |
+
valid_border_margin: 3
|
52 |
+
min_counts: 30
|
53 |
+
homographies:
|
54 |
+
translation: true
|
55 |
+
rotation: true
|
56 |
+
scaling: true
|
57 |
+
perspective: true
|
58 |
+
scaling_amplitude: 0.2
|
59 |
+
perspective_amplitude_x: 0.2
|
60 |
+
perspective_amplitude_y: 0.2
|
61 |
+
allow_artifacts: true
|
62 |
+
patch_ratio: 0.85
|
63 |
+
# Evaluation related config
|
64 |
+
evaluation:
|
65 |
+
repeatability:
|
66 |
+
# Initial random seed used to sample homographic augmentation
|
67 |
+
seed: 200
|
68 |
+
# Parameter used to sample illumination change evaluation set.
|
69 |
+
photometric:
|
70 |
+
enable: False
|
71 |
+
# Parameter used to sample viewpoint change evaluation set.
|
72 |
+
homographic:
|
73 |
+
enable: True
|
74 |
+
num_samples: 2
|
75 |
+
params:
|
76 |
+
translation: true
|
77 |
+
rotation: true
|
78 |
+
scaling: true
|
79 |
+
perspective: true
|
80 |
+
scaling_amplitude: 0.2
|
81 |
+
perspective_amplitude_x: 0.2
|
82 |
+
perspective_amplitude_y: 0.2
|
83 |
+
patch_ratio: 0.85
|
84 |
+
max_angle: 1.57
|
85 |
+
allow_artifacts: true
|
86 |
+
valid_border_margin: 3
|