File size: 3,143 Bytes
37a2ca8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import os
import gradio as gr
import requests
import pandas as pd
from agent import answer_question

DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

def run_and_submit_all(profile: gr.OAuthProfile | None):
    if not profile:
        return "Please Login to Hugging Face with the button.", None

    username = profile.username
    space_id = os.getenv("SPACE_ID", "YOUR_SPACE_ID")
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # Fetch questions
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            return "Fetched questions list is empty or invalid format.", None
    except Exception as e:
        return f"Error fetching questions: {e}", None

    # Run agent on questions
    results_log = []
    answers_payload = []
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or not question_text:
            continue
        try:
            submitted_answer = answer_question(question_text)
            # Remove "FINAL ANSWER: " if not required by API (check course instructions)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # Submit answers
    submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload}
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        return final_status, pd.DataFrame(results_log)
    except Exception as e:
        return f"Submission Failed: {e}", pd.DataFrame(results_log)

with gr.Blocks() as demo:
    gr.Markdown("# smolagents GAIA Benchmark Submission")
    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")
    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
    run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])

if __name__ == "__main__":
    demo.launch(debug=True, share=False)