chezhian commited on
Commit
fc08be9
·
verified ·
1 Parent(s): 2c4cd8b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -193
app.py CHANGED
@@ -1,203 +1,26 @@
1
- import os
2
- import gradio as gr
3
- import requests
4
- import inspect
5
- import pandas as pd
6
- from smolagents import OpenAIServerModel, DuckDuckGoSearchTool, PythonInterpreterTool, WikipediaSearchTool, CodeAgent
7
-
8
- # (Keep Constants as is)
9
- # --- Constants ---
10
- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
11
-
12
- # --- Basic Agent Definition ---
13
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
14
- class BasicAgent:
15
- def __init__(self):
16
- print("BasicAgent initialized.")
17
- def __call__(self, question: str) -> str:
18
- self.agent = CodeAgent(
19
- model=OpenAIServerModel(
20
- model_id="anthropic/claude-3.7-sonnet",
21
- api_key=os.environ["OPENROUTER_API_KEY"],
22
- api_base="https://openrouter.ai/api/v1"
23
- ),
24
- tools=[DuckDuckGoSearchTool(), PythonInterpreterTool(), WikipediaSearchTool()]
25
- )
26
- print(f"Agent received question (first 50 chars): {question[:50]}...")
27
- fixed_answer = self.agent.run(question)
28
- print(f"Agent returning answer: {fixed_answer}")
29
- return fixed_answer
30
-
31
- def run_and_submit_all( profile: gr.OAuthProfile | None):
32
- """
33
- Fetches all questions, runs the BasicAgent on them, submits all answers,
34
- and displays the results.
35
- """
36
- # --- Determine HF Space Runtime URL and Repo URL ---
37
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
38
-
39
- if profile:
40
- username= f"{profile.username}"
41
- print(f"User logged in: {username}")
42
- else:
43
- print("User not logged in.")
44
- return "Please Login to Hugging Face with the button.", None
45
-
46
- api_url = DEFAULT_API_URL
47
- questions_url = f"{api_url}/questions"
48
- submit_url = f"{api_url}/submit"
49
-
50
- # 1. Instantiate Agent ( modify this part to create your agent)
51
- try:
52
- agent = BasicAgent()
53
- except Exception as e:
54
- print(f"Error instantiating agent: {e}")
55
- return f"Error initializing agent: {e}", None
56
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
57
- agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
58
- print(agent_code)
59
-
60
- # 2. Fetch Questions
61
- print(f"Fetching questions from: {questions_url}")
62
- try:
63
- response = requests.get(questions_url, timeout=15)
64
- response.raise_for_status()
65
- questions_data = response.json()
66
- if not questions_data:
67
- print("Fetched questions list is empty.")
68
- return "Fetched questions list is empty or invalid format.", None
69
- print(f"Fetched {len(questions_data)} questions.")
70
- except requests.exceptions.RequestException as e:
71
- print(f"Error fetching questions: {e}")
72
- return f"Error fetching questions: {e}", None
73
- except requests.exceptions.JSONDecodeError as e:
74
- print(f"Error decoding JSON response from questions endpoint: {e}")
75
- print(f"Response text: {response.text[:500]}")
76
- return f"Error decoding server response for questions: {e}", None
77
- except Exception as e:
78
- print(f"An unexpected error occurred fetching questions: {e}")
79
- return f"An unexpected error occurred fetching questions: {e}", None
80
 
81
- # 3. Run your Agent
82
- results_log = []
83
- answers_payload = []
84
- print(f"Running agent on {len(questions_data)} questions...")
85
- for item in questions_data:
86
- task_id = item.get("task_id")
87
- question_text = item.get("question")
88
- if not task_id or question_text is None:
89
- print(f"Skipping item with missing task_id or question: {item}")
90
- continue
91
- try:
92
- submitted_answer = agent(question_text)
93
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
94
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
95
- except Exception as e:
96
- print(f"Error running agent on task {task_id}: {e}")
97
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
98
 
99
- if not answers_payload:
100
- print("Agent did not produce any answers to submit.")
101
- return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
102
 
103
- # 4. Prepare Submission
104
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
105
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
106
- print(status_update)
107
 
108
- # 5. Submit
109
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
110
- try:
111
- response = requests.post(submit_url, json=submission_data, timeout=60)
112
- response.raise_for_status()
113
- result_data = response.json()
114
- final_status = (
115
- f"Submission Successful!\n"
116
- f"User: {result_data.get('username')}\n"
117
- f"Overall Score: {result_data.get('score', 'N/A')}% "
118
- f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
119
- f"Message: {result_data.get('message', 'No message received.')}"
120
- )
121
- print("Submission successful.")
122
- results_df = pd.DataFrame(results_log)
123
- return final_status, results_df
124
- except requests.exceptions.HTTPError as e:
125
- error_detail = f"Server responded with status {e.response.status_code}."
126
- try:
127
- error_json = e.response.json()
128
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
129
- except requests.exceptions.JSONDecodeError:
130
- error_detail += f" Response: {e.response.text[:500]}"
131
- status_message = f"Submission Failed: {error_detail}"
132
- print(status_message)
133
- results_df = pd.DataFrame(results_log)
134
- return status_message, results_df
135
- except requests.exceptions.Timeout:
136
- status_message = "Submission Failed: The request timed out."
137
- print(status_message)
138
- results_df = pd.DataFrame(results_log)
139
- return status_message, results_df
140
- except requests.exceptions.RequestException as e:
141
- status_message = f"Submission Failed: Network error - {e}"
142
- print(status_message)
143
- results_df = pd.DataFrame(results_log)
144
- return status_message, results_df
145
- except Exception as e:
146
- status_message = f"An unexpected error occurred during submission: {e}"
147
- print(status_message)
148
- results_df = pd.DataFrame(results_log)
149
- return status_message, results_df
150
 
151
 
152
- # --- Build Gradio Interface using Blocks ---
153
  with gr.Blocks() as demo:
154
- gr.Markdown("# Basic Agent Evaluation Runner")
155
- gr.Markdown(
156
- """
157
- **Instructions:**
158
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
159
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
160
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
161
- ---
162
- **Disclaimers:**
163
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
164
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
165
- """
166
- )
167
-
168
- gr.LoginButton()
169
-
170
- run_button = gr.Button("Run Evaluation & Submit All Answers")
171
-
172
- status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
173
- # Removed max_rows=10 from DataFrame constructor
174
- results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
175
 
176
- run_button.click(
177
- fn=run_and_submit_all,
178
- outputs=[status_output, results_table]
179
- )
180
 
181
  if __name__ == "__main__":
182
- print("\n" + "-"*30 + " App Starting " + "-"*30)
183
- # Check for SPACE_HOST and SPACE_ID at startup for information
184
- space_host_startup = os.getenv("SPACE_HOST")
185
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
186
-
187
- if space_host_startup:
188
- print(f"✅ SPACE_HOST found: {space_host_startup}")
189
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
190
- else:
191
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
192
-
193
- if space_id_startup: # Print repo URLs if SPACE_ID is found
194
- print(f"✅ SPACE_ID found: {space_id_startup}")
195
- print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
196
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
197
- else:
198
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
199
-
200
- print("-"*(60 + len(" App Starting ")) + "\n")
201
-
202
- print("Launching Gradio Interface for Basic Agent Evaluation...")
203
- demo.launch(debug=True, share=False)
 
1
+ # app.py
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
+ import gradio as gr
4
+ from agent import create_agent
5
+ from dotenv import load_dotenv
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
+ load_dotenv()
8
+ agent = create_agent()
 
9
 
 
 
 
 
10
 
11
+ def respond_to_query(query: str) -> str:
12
+ response = agent.run(query)
13
+ return response
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
 
 
16
  with gr.Blocks() as demo:
17
+ gr.Markdown("# 🤖 SmolAgent GAIA Assistant")
18
+ with gr.Row():
19
+ user_input = gr.Textbox(label="Ask your question")
20
+ output = gr.Textbox(label="Agent's Response")
21
+ submit_btn = gr.Button("Submit")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
+ submit_btn.click(fn=respond_to_query, inputs=[user_input], outputs=[output])
 
 
 
24
 
25
  if __name__ == "__main__":
26
+ demo.launch()