Spaces:
Running
Running
Chidam Gopal
commited on
intent classifier app
Browse files- app.py +42 -0
- infer_intent.py +64 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import streamlit.components.v1 as components
|
| 3 |
+
from infer_intent import IntentClassifier
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
|
| 6 |
+
st.set_page_config(layout="wide")
|
| 7 |
+
st.title("Intent classifier")
|
| 8 |
+
|
| 9 |
+
@st.cache_resource
|
| 10 |
+
def get_intent_classifier():
|
| 11 |
+
cls = IntentClassifier()
|
| 12 |
+
return cls
|
| 13 |
+
|
| 14 |
+
cls = get_intent_classifier()
|
| 15 |
+
query = st.text_input("Enter a query", value="What is the weather today")
|
| 16 |
+
pred_result, proba_result = cls.find_intent(query)
|
| 17 |
+
|
| 18 |
+
st.markdown(f"prediction = :green[{pred_result}]")
|
| 19 |
+
keys = list(proba_result.keys())
|
| 20 |
+
values = list(proba_result.values())
|
| 21 |
+
|
| 22 |
+
# Creating the bar plot
|
| 23 |
+
fig, ax = plt.subplots()
|
| 24 |
+
ax.barh(keys, values)
|
| 25 |
+
|
| 26 |
+
# Adding labels and title
|
| 27 |
+
ax.set_xlabel('Intent')
|
| 28 |
+
ax.set_ylabel('Values')
|
| 29 |
+
ax.set_title('Intents probability score')
|
| 30 |
+
|
| 31 |
+
col1, col2 = st.columns([2,4])
|
| 32 |
+
|
| 33 |
+
with col1:
|
| 34 |
+
st.pyplot(fig)
|
| 35 |
+
|
| 36 |
+
with col2:
|
| 37 |
+
exp = st.expander("Explore training data")
|
| 38 |
+
with exp:
|
| 39 |
+
html_file = "reports/web_search_intents.html"
|
| 40 |
+
with open(html_file, 'r', encoding='utf-8') as f:
|
| 41 |
+
plotly_html = f.read()
|
| 42 |
+
components.html(plotly_html, height=900, width=900)
|
infer_intent.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class IntentClassifier:
|
| 6 |
+
def __init__(self):
|
| 7 |
+
self.id2label = {0: 'information_intent',
|
| 8 |
+
1: 'yelp_intent',
|
| 9 |
+
2: 'navigation_intent',
|
| 10 |
+
3: 'travel_intent',
|
| 11 |
+
4: 'purchase_intent',
|
| 12 |
+
5: 'weather_intent',
|
| 13 |
+
6: 'translation_intent',
|
| 14 |
+
7: 'unknown'}
|
| 15 |
+
self.label2id = {label:id for id,label in self.id2label.items()}
|
| 16 |
+
|
| 17 |
+
self.tokenizer = AutoTokenizer.from_pretrained("chidamnat2002/intent_classifier")
|
| 18 |
+
self.intent_model = AutoModelForSequenceClassification.from_pretrained('chidamnat2002/intent_classifier',
|
| 19 |
+
num_labels=8,
|
| 20 |
+
torch_dtype=torch.bfloat16,
|
| 21 |
+
id2label=self.id2label,
|
| 22 |
+
label2id=self.label2id)
|
| 23 |
+
|
| 24 |
+
def find_intent(self, sequence, verbose=False):
|
| 25 |
+
inputs = self.tokenizer(sequence,
|
| 26 |
+
return_tensors="pt", # ONNX requires inputs in NumPy format
|
| 27 |
+
padding="max_length", # Pad to max length
|
| 28 |
+
truncation=True, # Truncate if the text is too long
|
| 29 |
+
max_length=64)
|
| 30 |
+
|
| 31 |
+
self.intent_model.eval()
|
| 32 |
+
with torch.no_grad():
|
| 33 |
+
outputs = self.intent_model(**inputs)
|
| 34 |
+
logits = outputs.logits
|
| 35 |
+
prediction = torch.argmax(logits, dim=1).item()
|
| 36 |
+
probabilities = torch.softmax(logits, dim=1)
|
| 37 |
+
rounded_probabilities = torch.round(probabilities, decimals=3)
|
| 38 |
+
|
| 39 |
+
pred_result = self.id2label[prediction]
|
| 40 |
+
proba_result = dict(zip(self.label2id.keys(), rounded_probabilities.tolist()[0]))
|
| 41 |
+
if verbose:
|
| 42 |
+
print(sequence + " -> " + pred_result)
|
| 43 |
+
print(proba_result, "\n")
|
| 44 |
+
return pred_result, proba_result
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def main():
|
| 48 |
+
text_list = [
|
| 49 |
+
'floor repair cost',
|
| 50 |
+
'pet store near me',
|
| 51 |
+
'who is the us president',
|
| 52 |
+
'italian food',
|
| 53 |
+
'sandwiches for lunch',
|
| 54 |
+
"cheese burger cost",
|
| 55 |
+
"What is the weather today",
|
| 56 |
+
"what is the capital of usa",
|
| 57 |
+
"cruise trip to carribean",
|
| 58 |
+
]
|
| 59 |
+
cls = IntentClassifier()
|
| 60 |
+
for sequence in text_list:
|
| 61 |
+
cls.find_intent(sequence)
|
| 62 |
+
|
| 63 |
+
if __name__ == '__main__':
|
| 64 |
+
main()
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers==4.45.1
|
| 2 |
+
torch==2.4.1
|
| 3 |
+
streamlit==1.38.0
|
| 4 |
+
matplotlib==3.9.2
|