File size: 12,187 Bytes
5a250ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import streamlit as st
import torch
from transformers import BertForSequenceClassification, BertTokenizerFast
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import time
import pandas as pd
import base64
from PIL import Image
import io

# Set page configuration
st.set_page_config(
    page_title="SMS Spam Guard",
    page_icon="🛡️",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Generate SafeTalk logo as base64 (blue shield with "ST" inside)
def create_logo():
    from PIL import Image, ImageDraw, ImageFont
    import io
    import base64
    
    # Create a new image with a transparent background
    img = Image.new('RGBA', (200, 200), color=(0, 0, 0, 0))
    draw = ImageDraw.Draw(img)
    
    # Draw a shield shape
    shield_color = (30, 58, 138)  # Dark blue
    
    # Shield outline
    points = [(100, 10), (180, 50), (160, 170), (100, 190), (40, 170), (20, 50)]
    draw.polygon(points, fill=shield_color)
    
    # Try to load a font, or use default
    try:
        font = ImageFont.truetype("arial.ttf", 80)
    except IOError:
        font = ImageFont.load_default()
    
    # Add "ST" text in white
    draw.text((70, 60), "ST", fill=(255, 255, 255), font=font)
    
    # Convert to base64 for embedding
    buffered = io.BytesIO()
    img.save(buffered, format="PNG")
    return base64.b64encode(buffered.getvalue()).decode()

# Custom CSS for styling
st.markdown("""

<style>

    .main-header {

        font-size: 2.5rem !important;

        color: #1E3A8A;

        font-weight: 700;

        margin-bottom: 0.5rem;

    }

    .sub-header {

        font-size: 1.1rem;

        color: #6B7280;

        margin-bottom: 2rem;

    }

    .highlight {

        background-color: #F3F4F6;

        padding: 1.5rem;

        border-radius: 0.5rem;

        margin-bottom: 1rem;

    }

    .result-card {

        background-color: #F0F9FF;

        padding: 1.5rem;

        border-radius: 0.5rem;

        border-left: 5px solid #3B82F6;

        margin-bottom: 1rem;

    }

    .spam-alert {

        background-color: #FEF2F2;

        border-left: 5px solid #EF4444;

    }

    .ham-alert {

        background-color: #ECFDF5;

        border-left: 5px solid #10B981;

    }

    .footer {

        text-align: center;

        margin-top: 3rem;

        font-size: 0.8rem;

        color: #9CA3AF;

    }

    .metrics-container {

        display: flex;

        justify-content: space-between;

        margin-top: 1rem;

    }

    .metric-item {

        text-align: center;

        padding: 1rem;

        background-color: #F9FAFB;

        border-radius: 0.5rem;

        box-shadow: 0 1px 3px rgba(0,0,0,0.1);

    }

    .language-tag {

        display: inline-block;

        padding: 0.25rem 0.5rem;

        background-color: #E0E7FF;

        color: #4F46E5;

        border-radius: 9999px;

        font-size: 0.8rem;

        font-weight: 500;

        margin-right: 0.5rem;

    }

</style>

""", unsafe_allow_html=True)

@st.cache_resource
def load_language_model():
    """Load the language detection model"""
    model_name = "papluca/xlm-roberta-base-language-detection"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForSequenceClassification.from_pretrained(model_name)
    return tokenizer, model

@st.cache_resource
def load_spam_model():
    """Load the fine-tuned BERT spam detection model"""
    model_path = "chjivan/final"
    tokenizer = BertTokenizerFast.from_pretrained(model_path)
    model = BertForSequenceClassification.from_pretrained(model_path)
    return tokenizer, model

def detect_language(text, tokenizer, model):
    """Detect the language of the input text"""
    inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
    with torch.no_grad():
        outputs = model(**inputs)
    
    # Get predictions and convert to probabilities
    logits = outputs.logits
    probabilities = torch.softmax(logits, dim=1)[0]
    
    # Get the predicted language and its probability
    predicted_class_id = torch.argmax(probabilities).item()
    predicted_language = model.config.id2label[predicted_class_id]
    confidence = probabilities[predicted_class_id].item()
    
    # Get top 3 languages with their probabilities
    top_3_indices = torch.topk(probabilities, 3).indices.tolist()
    top_3_probs = torch.topk(probabilities, 3).values.tolist()
    top_3_langs = [(model.config.id2label[idx], prob) for idx, prob in zip(top_3_indices, top_3_probs)]
    
    return predicted_language, confidence, top_3_langs

def classify_spam(text, tokenizer, model):
    """Classify the input text as spam or ham"""
    inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128)
    with torch.no_grad():
        outputs = model(**inputs)
    
    # Get predictions and convert to probabilities
    logits = outputs.logits
    probabilities = torch.softmax(logits, dim=1)[0]
    
    # Get the predicted class and its probability (0: ham, 1: spam)
    predicted_class_id = torch.argmax(probabilities).item()
    confidence = probabilities[predicted_class_id].item()
    
    is_spam = predicted_class_id == 1
    return is_spam, confidence

# Generate and cache logo
logo_base64 = create_logo()
logo_html = f'<img src="data:image/png;base64,{logo_base64}" style="height:150px;">'

# Load both models
with st.spinner("Loading models... This may take a moment."):
    lang_tokenizer, lang_model = load_language_model()
    spam_tokenizer, spam_model = load_spam_model()

# App Header with logo
col1, col2 = st.columns([1, 5])
with col1:
    st.markdown(logo_html, unsafe_allow_html=True)
with col2:
    st.markdown('<h1 class="main-header">SMS Spam Guard</h1>', unsafe_allow_html=True)
    st.markdown('<p class="sub-header">智能短信垃圾过滤助手 by SafeTalk Communications Ltd.</p>', unsafe_allow_html=True)

# Sidebar
with st.sidebar:
    st.markdown(logo_html, unsafe_allow_html=True)
    st.markdown("### About SafeTalk")
    st.markdown("SafeTalk Communications Ltd. provides intelligent communication security solutions to protect users from spam and fraudulent messages.")
    st.markdown("#### Our Technology")
    st.markdown("- ✅ Advanced AI-powered spam detection")
    st.markdown("- 🌐 Multi-language support")
    st.markdown("- 🔒 Secure and private processing")
    st.markdown("- ⚡ Real-time analysis")
    
    st.markdown("---")
    st.markdown("### Sample Messages")
    
    if st.button("Sample Spam (English)"):
        st.session_state.sms_input = "URGENT: You have won a $1,000 Walmart gift card. Go to http://bit.ly/claim-prize to claim now before it expires!"
    
    if st.button("Sample Legitimate (English)"):
        st.session_state.sms_input = "Your Amazon package will be delivered today. Thanks for ordering from Amazon!"
    
    if st.button("Sample Message (French)"):
        st.session_state.sms_input = "Bonjour! Votre réservation pour le restaurant est confirmée pour ce soir à 20h. À bientôt!"
    
    if st.button("Sample Message (Spanish)"):
        st.session_state.sms_input = "Hola, tu cita médica está programada para mañana a las 10:00. Por favor llega 15 minutos antes."

# Main Content
st.markdown('<div class="highlight">', unsafe_allow_html=True)
# Input form
sms_input = st.text_area(
    "Enter the SMS message to analyze:",
    value=st.session_state.get("sms_input", ""),
    height=100,
    key="sms_input",
    help="Enter the SMS message you want to analyze for spam"
)

analyze_button = st.button("📱 Analyze Message", use_container_width=True)
st.markdown('</div>', unsafe_allow_html=True)

# Process input and display results
if analyze_button and sms_input:
    with st.spinner("Analyzing message..."):
        # Step 1: Language Detection
        lang_start_time = time.time()
        lang_code, lang_confidence, top_langs = detect_language(sms_input, lang_tokenizer, lang_model)
        lang_time = time.time() - lang_start_time
        
        # Create mapping for full language names
        lang_names = {
            "ar": "Arabic",
            "bg": "Bulgarian",
            "de": "German",
            "el": "Greek",
            "en": "English",
            "es": "Spanish",
            "fr": "French",
            "hi": "Hindi",
            "it": "Italian",
            "ja": "Japanese",
            "nl": "Dutch",
            "pl": "Polish",
            "pt": "Portuguese",
            "ru": "Russian",
            "sw": "Swahili",
            "th": "Thai",
            "tr": "Turkish",
            "ur": "Urdu",
            "vi": "Vietnamese",
            "zh": "Chinese"
        }
        
        lang_name = lang_names.get(lang_code, lang_code)
        
        # Step 2: Spam Classification
        spam_start_time = time.time()
        is_spam, spam_confidence = classify_spam(sms_input, spam_tokenizer, spam_model)
        spam_time = time.time() - spam_start_time
        
        # Display Language Detection Results
        st.markdown("### Analysis Results")
        
        col1, col2 = st.columns(2)
        
        with col1:
            st.markdown("#### 📊 Language Detection")
            st.markdown(f'<div class="result-card">', unsafe_allow_html=True)
            st.markdown(f'<span class="language-tag">{lang_name}</span> Detected with {lang_confidence:.1%} confidence', unsafe_allow_html=True)
            
            # Display top 3 languages
            st.markdown("##### Top language probabilities:")
            for lang_code, prob in top_langs:
                lang_full = lang_names.get(lang_code, lang_code)
                st.markdown(f"- {lang_full}: {prob:.1%}")
                
            st.markdown(f"⏱️ Processing time: {lang_time:.3f} seconds")
            st.markdown('</div>', unsafe_allow_html=True)
        
        with col2:
            st.markdown("#### 🔍 Spam Detection")
            
            if is_spam:
                st.markdown(f'<div class="result-card spam-alert">', unsafe_allow_html=True)
                st.markdown(f"⚠️ **SPAM DETECTED** with {spam_confidence:.1%} confidence")
                st.markdown("This message appears to be spam and potentially harmful.")
            else:
                st.markdown(f'<div class="result-card ham-alert">', unsafe_allow_html=True)
                st.markdown(f"✅ **LEGITIMATE MESSAGE** with {spam_confidence:.1%} confidence")
                st.markdown("This message appears to be legitimate.")
            
            st.markdown(f"⏱️ Processing time: {spam_time:.3f} seconds")
            st.markdown('</div>', unsafe_allow_html=True)
        
        # Summary and Recommendations
        st.markdown("### 📋 Summary & Recommendations")
        if is_spam:
            st.warning("📵 **Recommended Action**: This message should be blocked or moved to spam folder.")
            st.markdown("""

            **Why this is likely spam:**

            - Contains suspicious language patterns

            - May include urgent calls to action

            - Could contain unsolicited offers

            """)
        else:
            st.success("✅ **Recommended Action**: This message can be delivered to the inbox.")
        
        # Chart for visualization
        st.markdown("### 📈 Confidence Visualization")
        chart_data = pd.DataFrame({
            'Task': ['Language Detection', 'Spam Classification'],
            'Confidence': [lang_confidence, spam_confidence if is_spam else 1-spam_confidence]
        })
        st.bar_chart(chart_data.set_index('Task'))

# Footer
st.markdown('<div class="footer">', unsafe_allow_html=True)
st.markdown("© 2023 SafeTalk Communications Ltd. | www.safetalk.com")
st.markdown("SMS Spam Guard is an intelligent message filtering solution to protect users from unwanted communications.")
st.markdown('</div>', unsafe_allow_html=True)